Maintained by
Oleg.GrenrusThis version can be pinned in stack with:fin-0.1.1@sha256:dfe9221b0c3982c9b1786716b0660741566564de28b53f550b28b24bc83484f4,3570
Module documentation for 0.1.1
This package provides two simple types, and some tools to work with them.
Also on type level as DataKinds
.
-- Peano naturals
data Nat = Z | S Nat
-- Finite naturals
data Fin (n :: Nat) where
Z :: Fin ('S n)
S :: Fin n -> Fin ('Nat.S n)
vec implements length-indexed
(sized) lists using this package for indexes.
The Data.Fin.Enum
module let's work generically with enumerations.
See Hasochism: the pleasure and pain of dependently typed haskell programming
by Sam Lindley and Conor McBride for answers to how and why.
Read APLicative Programming with Naperian Functors
by Jeremy Gibbons for (not so) different ones.
Similar packages
Revision history for fin
0.1.1
- Add
isMin
and isMax
- Add
mirror
, weakenRight1
and weakenLeft1
- Add
Mult2
and DivMod2
- Explicitly derive
Typeable SNat
and Typeable LEProof
- Derive
Typeable
for Z
and S
on GHC-7.8 explicitly
- Add
QuickCheck
instances for Nat
and Fin
0.1
- Rename
Fin
constructors to FZ
and FS
.
Now you can have both Nat
and Fin
imported unqualified in a single module.
0.0.3
- Add
Data.Type.Nat.LE
, Data.Type.Nat.LT
and Data.Type.Nat.LE.ReflStep
modules
- Add
withSNat
and discreteNat
0.0.2
- In
Fin
add: append
and split
- Add
(Enum a, Enum b) => Enum (Either a b)
instance
0.0.1
- GHC-8.4.1 / base-4.11 support
0
- First version. Released on an unsuspecting world.