Hoogle Search
Within LTS Haskell 24.4 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> bbase Prelude Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument. In the case of lists, foldl, when applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the entire input list must be traversed. Like all left-associative folds, foldl will diverge if given an infinite list. If you want an efficient strict left-fold, you probably want to use foldl' instead of foldl. The reason for this is that the latter does not force the inner results (e.g. z `f` x1 in the above example) before applying them to the operator (e.g. to (`f` x2)). This results in a thunk chain O(n) elements long, which then must be evaluated from the outside-in. For a general Foldable structure this should be semantically identical to:foldl f z = foldl f z . toList
Examples
The first example is a strict fold, which in practice is best performed with foldl'.>>> foldl (+) 42 [1,2,3,4] 52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.>>> foldl (\acc c -> c : acc) "abcd" "efgh" "hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:>>> foldl (\a _ -> a) 0 $ repeat 1 * Hangs forever *
WARNING: When it comes to lists, you always want to use either foldl' or foldr instead.foldl :: Foldable t => (b -> a -> b) -> b -> t a -> bbase Data.List Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument. In the case of lists, foldl, when applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the entire input list must be traversed. Like all left-associative folds, foldl will diverge if given an infinite list. If you want an efficient strict left-fold, you probably want to use foldl' instead of foldl. The reason for this is that the latter does not force the inner results (e.g. z `f` x1 in the above example) before applying them to the operator (e.g. to (`f` x2)). This results in a thunk chain O(n) elements long, which then must be evaluated from the outside-in. For a general Foldable structure this should be semantically identical to:foldl f z = foldl f z . toList
Examples
The first example is a strict fold, which in practice is best performed with foldl'.>>> foldl (+) 42 [1,2,3,4] 52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.>>> foldl (\acc c -> c : acc) "abcd" "efgh" "hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:>>> foldl (\a _ -> a) 0 $ repeat 1 * Hangs forever *
WARNING: When it comes to lists, you always want to use either foldl' or foldr instead.foldl :: Foldable t => (b -> a -> b) -> b -> t a -> bbase Data.Foldable Left-associative fold of a structure, lazy in the accumulator. This is rarely what you want, but can work well for structures with efficient right-to-left sequencing and an operator that is lazy in its left argument. In the case of lists, foldl, when applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
Note that to produce the outermost application of the operator the entire input list must be traversed. Like all left-associative folds, foldl will diverge if given an infinite list. If you want an efficient strict left-fold, you probably want to use foldl' instead of foldl. The reason for this is that the latter does not force the inner results (e.g. z `f` x1 in the above example) before applying them to the operator (e.g. to (`f` x2)). This results in a thunk chain O(n) elements long, which then must be evaluated from the outside-in. For a general Foldable structure this should be semantically identical to:foldl f z = foldl f z . toList
Examples
The first example is a strict fold, which in practice is best performed with foldl'.>>> foldl (+) 42 [1,2,3,4] 52
Though the result below is lazy, the input is reversed before prepending it to the initial accumulator, so corecursion begins only after traversing the entire input string.>>> foldl (\acc c -> c : acc) "abcd" "efgh" "hgfeabcd"
A left fold of a structure that is infinite on the right cannot terminate, even when for any finite input the fold just returns the initial accumulator:>>> foldl (\a _ -> a) 0 $ repeat 1 * Hangs forever *
WARNING: When it comes to lists, you always want to use either foldl' or foldr instead.foldl :: forall a b . (b -> a -> b) -> b -> [a] -> bbase GHC.List foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
The list must be finite.>>> foldl (+) 0 [1..4] 10 >>> foldl (+) 42 [] 42 >>> foldl (-) 100 [1..4] 90 >>> foldl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd'] "dcbafoo" >>> foldl (+) 0 [1..] * Hangs forever *
foldl :: (a -> Word8 -> a) -> a -> ByteString -> abytestring Data.ByteString foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right.
foldl :: (a -> Char -> a) -> a -> ByteString -> abytestring Data.ByteString.Char8 foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right.
foldl :: (a -> Word8 -> a) -> a -> ByteString -> abytestring Data.ByteString.Lazy foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right.
foldl :: (a -> Char -> a) -> a -> ByteString -> abytestring Data.ByteString.Lazy.Char8 foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right.
foldl :: (a -> Word8 -> a) -> a -> ShortByteString -> abytestring Data.ByteString.Short foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ShortByteString, reduces the ShortByteString using the binary operator, from left to right.
foldl :: (a -> Word8 -> a) -> a -> ShortByteString -> abytestring Data.ByteString.Short.Internal foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ShortByteString, reduces the ShortByteString using the binary operator, from left to right.
Page 1 of many | Next