Hoogle Search
Within LTS Haskell 24.13 (ghc-9.10.3)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
class Functor f =>
Applicative (f :: Type -> Type)base Prelude A functor with application, providing operations to
- embed pure expressions (pure), and
- sequence computations and combine their results (<*> and liftA2).
(<*>) = liftA2 id
liftA2 f x y = f <$> x <*> y
Further, any definition must satisfy the following:- Identity
pure id <*> v = v
- Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism
pure f <*> pure x = pure (f x)
- Interchange
u <*> pure y = pure ($ y) <*> u
forall x y. p (q x y) = f x . g y
it follows from the above thatliftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v
If f is also a Monad, it should satisfy (which implies that pure and <*> satisfy the applicative functor laws).-
This module describes a structure intermediate between a functor and a monad (technically, a strong lax monoidal functor). Compared with monads, this interface lacks the full power of the binding operation >>=, but
- it has more instances.
- it is sufficient for many uses, e.g. context-free parsing, or the Traversable class.
- instances can perform analysis of computations before they are executed, and thus produce shared optimizations.
class Functor f =>
Applicative (f :: Type -> Type)base Control.Applicative A functor with application, providing operations to
- embed pure expressions (pure), and
- sequence computations and combine their results (<*> and liftA2).
(<*>) = liftA2 id
liftA2 f x y = f <$> x <*> y
Further, any definition must satisfy the following:- Identity
pure id <*> v = v
- Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism
pure f <*> pure x = pure (f x)
- Interchange
u <*> pure y = pure ($ y) <*> u
forall x y. p (q x y) = f x . g y
it follows from the above thatliftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v
If f is also a Monad, it should satisfy (which implies that pure and <*> satisfy the applicative functor laws).class Functor f =>
Applicative (f :: Type -> Type)base GHC.Base A functor with application, providing operations to
- embed pure expressions (pure), and
- sequence computations and combine their results (<*> and liftA2).
(<*>) = liftA2 id
liftA2 f x y = f <$> x <*> y
Further, any definition must satisfy the following:- Identity
pure id <*> v = v
- Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism
pure f <*> pure x = pure (f x)
- Interchange
u <*> pure y = pure ($ y) <*> u
forall x y. p (q x y) = f x . g y
it follows from the above thatliftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v
If f is also a Monad, it should satisfy (which implies that pure and <*> satisfy the applicative functor laws).-
No documentation available.
class Functor f =>
Applicative (f :: Type -> Type)hedgehog Hedgehog.Internal.Prelude A functor with application, providing operations to
- embed pure expressions (pure), and
- sequence computations and combine their results (<*> and liftA2).
(<*>) = liftA2 id
liftA2 f x y = f <$> x <*> y
Further, any definition must satisfy the following:- Identity
pure id <*> v = v
- Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
- Homomorphism
pure f <*> pure x = pure (f x)
- Interchange
u <*> pure y = pure ($ y) <*> u
forall x y. p (q x y) = f x . g y
it follows from the above thatliftA2 p (liftA2 q u v) = liftA2 f u . liftA2 g v
If f is also a Monad, it should satisfy (which implies that pure and <*> satisfy the applicative functor laws).class Functor f =>
Applicative (f :: Type -> Type)ghc GHC.HsToCore.Monad No documentation available.
class Functor f =>
Applicative (f :: Type -> Type)ghc GHC.Prelude.Basic No documentation available.
class Functor f =>
Applicative (f :: Type -> Type)ghc GHC.Utils.Monad No documentation available.
-
No documentation available.
Page 1 of many | Next