Hoogle Search
Within LTS Haskell 24.2 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
(
>>= ) :: Monad m => m a -> (a -> m b) -> m bbase Prelude Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression
do a <- as bs a
An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to\x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.(
>>= ) :: Monad m => m a -> (a -> m b) -> m bbase Control.Monad Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression
do a <- as bs a
An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to\x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.(
>>= ) :: Monad m => m a -> (a -> m b) -> m bbase Control.Monad.Instances Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression
do a <- as bs a
An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to\x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.(
>>= ) :: Monad m => m a -> (a -> m b) -> m bbase GHC.Base Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression
do a <- as bs a
An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to\x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.(
>>= ) :: Monad m => m a -> (a -> Code m b) -> Code m btemplate-haskell Language.Haskell.TH.CodeDo Module over monad operator for Code
(
>>= ) :: Monad m => m a -> (a -> m b) -> m bhedgehog Hedgehog.Internal.Prelude Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression
do a <- as bs a
An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to\x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.(
>>= ) :: Bind m => m a -> (a -> m b) -> m bsemigroupoids Semigroupoids.Do No documentation available.
(
>>= ) :: Monad m => m a -> (a -> m b) -> m bghc GHC.Prelude.Basic No documentation available.
(
>>= ) :: Monad m => m a -> (a -> m b) -> m bhaskell-gi-base Data.GI.Base.ShortPrelude Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression
do a <- as bs a
An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to\x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.(
>>= ) :: Monad m => m a -> (a -> m b) -> m brio RIO.Prelude Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression
do a <- as bs a
An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to\x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.
Page 1 of many | Next