Hoogle Search

Within LTS Haskell 22.21 (ghc-9.6.5)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. class Show a

    base Prelude

    Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:

    • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
    • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
    • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
    • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
    For example, given the declarations
    infixr 5 :^:
    data Tree a =  Leaf a  |  Tree a :^: Tree a
    
    the derived instance of Show is equivalent to
    instance (Show a) => Show (Tree a) where
    
    showsPrec d (Leaf m) = showParen (d > app_prec) $
    showString "Leaf " . showsPrec (app_prec+1) m
    where app_prec = 10
    
    showsPrec d (u :^: v) = showParen (d > up_prec) $
    showsPrec (up_prec+1) u .
    showString " :^: "      .
    showsPrec (up_prec+1) v
    where up_prec = 5
    
    Note that right-associativity of :^: is ignored. For example,
    • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

  2. module Text.Show

    Converting values to readable strings: the Show class and associated functions.

  3. class Show a

    base Text.Show

    Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:

    • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
    • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
    • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
    • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
    For example, given the declarations
    infixr 5 :^:
    data Tree a =  Leaf a  |  Tree a :^: Tree a
    
    the derived instance of Show is equivalent to
    instance (Show a) => Show (Tree a) where
    
    showsPrec d (Leaf m) = showParen (d > app_prec) $
    showString "Leaf " . showsPrec (app_prec+1) m
    where app_prec = 10
    
    showsPrec d (u :^: v) = showParen (d > up_prec) $
    showsPrec (up_prec+1) u .
    showString " :^: "      .
    showsPrec (up_prec+1) v
    where up_prec = 5
    
    Note that right-associativity of :^: is ignored. For example,
    • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

  4. module GHC.Show

    The Show class, and related operations.

  5. class Show a

    base GHC.Show

    Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:

    • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
    • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
    • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
    • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
    For example, given the declarations
    infixr 5 :^:
    data Tree a =  Leaf a  |  Tree a :^: Tree a
    
    the derived instance of Show is equivalent to
    instance (Show a) => Show (Tree a) where
    
    showsPrec d (Leaf m) = showParen (d > app_prec) $
    showString "Leaf " . showsPrec (app_prec+1) m
    where app_prec = 10
    
    showsPrec d (u :^: v) = showParen (d > up_prec) $
    showsPrec (up_prec+1) u .
    showString " :^: "      .
    showsPrec (up_prec+1) v
    where up_prec = 5
    
    Note that right-associativity of :^: is ignored. For example,
    • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

  6. class () => Show a

    amazonka-core Amazonka.Prelude

    Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:

    • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
    • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
    • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
    • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
    For example, given the declarations
    infixr 5 :^:
    data Tree a =  Leaf a  |  Tree a :^: Tree a
    
    the derived instance of Show is equivalent to
    instance (Show a) => Show (Tree a) where
    
    showsPrec d (Leaf m) = showParen (d > app_prec) $
    showString "Leaf " . showsPrec (app_prec+1) m
    where app_prec = 10
    
    showsPrec d (u :^: v) = showParen (d > up_prec) $
    showsPrec (up_prec+1) u .
    showString " :^: "      .
    showsPrec (up_prec+1) v
    where up_prec = 5
    
    Note that right-associativity of :^: is ignored. For example,
    • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

  7. class () => Show a

    hedgehog Hedgehog.Internal.Prelude

    Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:

    • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
    • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
    • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
    • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
    For example, given the declarations
    infixr 5 :^:
    data Tree a =  Leaf a  |  Tree a :^: Tree a
    
    the derived instance of Show is equivalent to
    instance (Show a) => Show (Tree a) where
    
    showsPrec d (Leaf m) = showParen (d > app_prec) $
    showString "Leaf " . showsPrec (app_prec+1) m
    where app_prec = 10
    
    showsPrec d (u :^: v) = showParen (d > up_prec) $
    showsPrec (up_prec+1) u .
    showString " :^: "      .
    showsPrec (up_prec+1) v
    where up_prec = 5
    
    Note that right-associativity of :^: is ignored. For example,
    • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

  8. module Hedgehog.Internal.Show

    No documentation available.

  9. class () => Show a

    ghc GHC.Prelude.Basic

    Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:

    • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
    • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
    • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
    • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
    For example, given the declarations
    infixr 5 :^:
    data Tree a =  Leaf a  |  Tree a :^: Tree a
    
    the derived instance of Show is equivalent to
    instance (Show a) => Show (Tree a) where
    
    showsPrec d (Leaf m) = showParen (d > app_prec) $
    showString "Leaf " . showsPrec (app_prec+1) m
    where app_prec = 10
    
    showsPrec d (u :^: v) = showParen (d > up_prec) $
    showsPrec (up_prec+1) u .
    showString " :^: "      .
    showsPrec (up_prec+1) v
    where up_prec = 5
    
    Note that right-associativity of :^: is ignored. For example,
    • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

  10. module GHC.Show

    No documentation available.

Page 1 of many | Next