Hoogle Search
Within LTS Haskell 24.2 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
module Generics.Deriving.
Monoid No documentation available.
-
generic-deriving Generics.Deriving.Monoid The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity x <> mempty = x
- Left identity mempty <> x = x
- Associativity x <> (y <> z) = (x <> y) <> z (Semigroup law)
- Concatenation mconcat = foldr (<>) mempty
- Unit mconcat (pure x) = x
- Multiplication mconcat (join xss) = mconcat (fmap mconcat xss)
- Subclass mconcat (toList xs) = sconcat xs
-
rio RIO.Prelude.Types The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity x <> mempty = x
- Left identity mempty <> x = x
- Associativity x <> (y <> z) = (x <> y) <> z (Semigroup law)
- Concatenation mconcat = foldr (<>) mempty
- Unit mconcat (pure x) = x
- Multiplication mconcat (join xss) = mconcat (fmap mconcat xss)
- Subclass mconcat (toList xs) = sconcat xs
module Test.Syd.Validity.
Monoid Monoid properties You will need TypeApplications to use these.
-
Cabal-syntax Distribution.Compat.Prelude No documentation available.
-
Cabal-syntax Distribution.Compat.Semigroup No documentation available.
-
Reexports functions to work with monoids plus adds extra useful functions.
-
relude Relude.Monoid The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity x <> mempty = x
- Left identity mempty <> x = x
- Associativity x <> (y <> z) = (x <> y) <> z (Semigroup law)
- Concatenation mconcat = foldr (<>) mempty
- Unit mconcat (pure x) = x
- Multiplication mconcat (join xss) = mconcat (fmap mconcat xss)
- Subclass mconcat (toList xs) = sconcat xs
-
Semigroups and monoids.
-
base-compat-batteries Data.Monoid.Compat The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity x <> mempty = x
- Left identity mempty <> x = x
- Associativity x <> (y <> z) = (x <> y) <> z (Semigroup law)
- Concatenation mconcat = foldr (<>) mempty
- Unit mconcat (pure x) = x
- Multiplication mconcat (join xss) = mconcat (fmap mconcat xss)
- Subclass mconcat (toList xs) = sconcat xs