Hoogle Search
Within LTS Haskell 24.10 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
module Language.Fixpoint.Types.
Graduals This module contains the top-level SOLUTION data types, including various indices used for solving.
-
liquid-fixpoint Language.Fixpoint.Types.Graduals Substitute Gradual Solution ---------------------------------------------
-
liquid-fixpoint Language.Fixpoint.Types.Refinements No documentation available.
isGradual :: HasGradual a => a -> Boolliquid-fixpoint Language.Fixpoint.Types.Refinements No documentation available.
resultGradual :: GSolution -> HashMap KVar (Expr, [Expr])liquid-fixpoint Language.Fixpoint.Types.Solutions No documentation available.
-
liquidhaskell-boot Language.Haskell.Liquid.UX.Config enable gradual type checking
Opt_AutoSccsOnIndividualCafs :: GeneralFlagliquidhaskell-boot Liquid.GHC.API No documentation available.
-
pipes-group Pipes.Group Lens to transform each individual functor layer of a FreeT. (over individually) is equivalent to maps, but with a less general type.
type Group a m x = Producer a m (Groups a m x) set individually :: Monad m => Group a m x -> Transformation a m x over individually :: Monad m => (Group a m x -> Group a m x) -> Transformation a m x
-
sbv Documentation.SBV.Examples.KnuckleDragger.Lists foldr f e xs == foldl (flip f) e (reverse xs)
We have:>>> foldrFoldlDuality Inductive lemma: foldlOverAppend Step: Base Q.E.D. Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Result: Q.E.D. Inductive lemma: foldrFoldlDuality Step: Base Q.E.D. Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Result: Q.E.D. [Proven] foldrFoldlDuality
foldrFoldlDualityGeneralized :: IO Proofsbv Documentation.SBV.Examples.KnuckleDragger.Lists Given:
x @ (y @ z) = (x @ y) @ z (associativity of @) and e @ x = x (left unit) and x @ e = x (right unit)
Prove:foldr (@) e xs = foldl (@) e xs
We have:>>> foldrFoldlDualityGeneralized Inductive lemma: helper Step: Base Q.E.D. Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Result: Q.E.D. Inductive lemma: foldrFoldlDuality Step: Base Q.E.D. Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Result: Q.E.D. [Proven] foldrFoldlDuality