Hoogle Search
Within LTS Haskell 24.19 (ghc-9.10.3)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
-
containers Data.IntMap.Merge.Lazy Map covariantly over a WhenMissing f x.
-
containers Data.IntMap.Merge.Strict Map over the entries whose keys are missing from the other map, optionally removing some. This is the most powerful SimpleWhenMissing tactic, but others are usually more efficient.
mapMaybeMissing :: (k -> x -> Maybe y) -> SimpleWhenMissing k x y
mapMaybeMissing f = traverseMaybeMissing (\k x -> pure (f k x))
but mapMaybeMissing uses fewer unnecessary Applicative operations. mapMissing :: forall (f :: Type -> Type) x y . Applicative f => (Key -> x -> y) -> WhenMissing f x ycontainers Data.IntMap.Merge.Strict Map over the entries whose keys are missing from the other map.
mapMissing :: (k -> x -> y) -> SimpleWhenMissing k x y
mapMissing f = mapMaybeMissing (\k x -> Just $ f k x)
but mapMissing is somewhat faster.-
containers Data.IntMap.Merge.Strict Map covariantly over a WhenMatched f k x y.
-
containers Data.IntMap.Merge.Strict Map covariantly over a WhenMissing f k x.
mapAccum :: (a -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)containers Data.IntMap.Strict The function mapAccum threads an accumulating argument through the map in ascending order of keys.
let f a b = (a ++ b, b ++ "X") mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])mapAccumRWithKey :: (a -> Key -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)containers Data.IntMap.Strict The function mapAccumRWithKey threads an accumulating argument through the map in descending order of keys.
mapAccumWithKey :: (a -> Key -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)containers Data.IntMap.Strict The function mapAccumWithKey threads an accumulating argument through the map in ascending order of keys.
let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X") mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")])mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)containers Data.IntMap.Strict Map values and separate the Left and Right results.
let f a = if a < "c" then Left a else Right a mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")]) mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")])
mapEitherWithKey :: (Key -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)containers Data.IntMap.Strict Map keys/values and separate the Left and Right results.
let f k a = if k < 5 then Left (k * 2) else Right (a ++ a) mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")]) mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")])