Hoogle Search
Within LTS Haskell 24.26 (ghc-9.10.3)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
supportsPseudoBooleans :: SolverCapabilities -> Boolsbv Data.SBV.Internals Supports pseudo-boolean operations?
-
sbv Data.SBV.Trans No documentation available.
-
sbv Data.SBV.Trans A symbolic boolean/bit
-
sbv Data.SBV.Trans isBoolean :: HasKind a => a -> Boolsbv Data.SBV.Trans No documentation available.
sBool :: MonadSymbolic m => String -> m SBoolsbv Data.SBV.Trans Generalization of sBool
sBools :: MonadSymbolic m => [String] -> m [SBool]sbv Data.SBV.Trans Generalization of sBools
shefferBooleanAlgebra :: IO BooleanAlgebraProofsbv Documentation.SBV.Examples.KnuckleDragger.ShefferStroke Prove that Sheffer stroke axioms imply it is a boolean algebra. We have:
>>> shefferBooleanAlgebra Axiom: ﬧﬧa == a Axiom: a ⏐ (b ⏐ ﬧb) == ﬧa Axiom: ﬧ(a ⏐ (b ⏐ c)) == (ﬧb ⏐ a) ⏐ (ﬧc ⏐ a) Lemma: a | b = b | a Step: 1 (ﬧﬧa == a) Q.E.D. Step: 2 (ﬧﬧa == a) Q.E.D. Step: 3 Q.E.D. Step: 4 (ﬧ(a ⏐ (b ⏐ c)) == (ﬧb ⏐ a) ⏐ (ﬧc ⏐ a)) Q.E.D. Step: 5 Q.E.D. Step: 6 (ﬧﬧa == a) Q.E.D. Step: 7 (ﬧﬧa == a) Q.E.D. Result: Q.E.D. Lemma: a | a′ = b | b′ Step: 1 (ﬧﬧa == a) Q.E.D. Step: 2 (a ⏐ (b ⏐ ﬧb) == ﬧa) Q.E.D. Step: 3 Q.E.D. Step: 4 (a ⏐ (b ⏐ ﬧb) == ﬧa) Q.E.D. Step: 5 (ﬧﬧa == a) Q.E.D. Result: Q.E.D. Lemma: a ⊔ b = b ⊔ a Q.E.D. Lemma: a ⊓ b = b ⊓ a Q.E.D. Lemma: a ⊔ ⲳ = a Q.E.D. Lemma: a ⊓ т = a Q.E.D. Lemma: a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c) Q.E.D. Lemma: a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c) Q.E.D. Lemma: a ⊔ aᶜ = т Q.E.D. Lemma: a ⊓ aᶜ = ⲳ Q.E.D. Lemma: a ⊔ т = т Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Result: Q.E.D. Lemma: a ⊓ ⲳ = ⲳ Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Result: Q.E.D. Lemma: a ⊔ (a ⊓ b) = a Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Result: Q.E.D. Lemma: a ⊓ (a ⊔ b) = a Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Result: Q.E.D. Lemma: a ⊓ a = a Step: 1 Q.E.D. Step: 2 Q.E.D. Result: Q.E.D. Lemma: a ⊔ a' = т → a ⊓ a' = ⲳ → a' = aᶜ Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Step: 7 Q.E.D. Step: 8 Q.E.D. Step: 9 Q.E.D. Step: 10 Q.E.D. Step: 11 Q.E.D. Result: Q.E.D. Lemma: aᶜᶜ = a Q.E.D. Lemma: aᶜ = bᶜ → a = b Q.E.D. Lemma: a ⊔ bᶜ = т → a ⊓ bᶜ = ⲳ → a = b Q.E.D. Lemma: a ⊔ (aᶜ ⊔ b) = т Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Result: Q.E.D. Lemma: a ⊓ (aᶜ ⊓ b) = ⲳ Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Result: Q.E.D. Lemma: (a ⊔ b)ᶜ = aᶜ ⊓ bᶜ Q.E.D. Lemma: (a ⨅ b)ᶜ = aᶜ ⨆ bᶜ Q.E.D. Lemma: (a ⊔ (b ⊔ c)) ⊔ aᶜ = т Q.E.D. Lemma: b ⊓ (a ⊔ (b ⊔ c)) = b Q.E.D. Lemma: b ⊔ (a ⊓ (b ⊓ c)) = b Q.E.D. Lemma: (a ⊔ (b ⊔ c)) ⊔ bᶜ = т Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Step: 7 Q.E.D. Step: 8 Q.E.D. Step: 9 Q.E.D. Result: Q.E.D. Lemma: (a ⊔ (b ⊔ c)) ⊔ cᶜ = т Q.E.D. Lemma: (a ⊔ b ⊔ c)ᶜ ⊓ a = ⲳ Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Step: 7 Q.E.D. Step: 8 Q.E.D. Step: 9 Q.E.D. Result: Q.E.D. Lemma: (a ⊔ b ⊔ c)ᶜ ⊓ b = ⲳ Q.E.D. Lemma: (a ⊔ b ⊔ c)ᶜ ⊓ c = ⲳ Q.E.D. Lemma: (a ⊔ (b ⊔ c)) ⊔ ((a ⊔ b) ⊔ c)ᶜ = т Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Step: 7 Q.E.D. Step: 8 Q.E.D. Result: Q.E.D. Lemma: (a ⊔ (b ⊔ c)) ⊓ ((a ⊔ b) ⊔ c)ᶜ = ⲳ Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Step: 5 Q.E.D. Step: 6 Q.E.D. Step: 7 Q.E.D. Step: 8 Q.E.D. Step: 9 Q.E.D. Step: 10 Q.E.D. Step: 11 Q.E.D. Step: 12 Q.E.D. Result: Q.E.D. Lemma: a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c Q.E.D. Lemma: a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Result: Q.E.D. Lemma: a ≤ b → b ≤ a → a = b Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Result: Q.E.D. Lemma: a ≤ a Q.E.D. Lemma: a ≤ b → b ≤ c → a ≤ c Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Step: 4 Q.E.D. Result: Q.E.D. Lemma: a < b ↔ a ≤ b ∧ ¬b ≤ a Q.E.D. Lemma: a ≤ a ⊔ b Q.E.D. Lemma: b ≤ a ⊔ b Q.E.D. Lemma: a ≤ c → b ≤ c → a ⊔ b ≤ c Step: 1 Q.E.D. Step: 2 Q.E.D. Result: Q.E.D. Lemma: a ⊓ b ≤ a Q.E.D. Lemma: a ⊓ b ≤ b Q.E.D. Lemma: a ≤ b → a ≤ c → a ≤ b ⊓ c Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Result: Q.E.D. Lemma: (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z Q.E.D. Lemma: x ⊓ xᶜ ≤ ⊥ Q.E.D. Lemma: ⊤ ≤ x ⊔ xᶜ Q.E.D. Lemma: a ≤ ⊤ Step: 1 Q.E.D. Step: 2 Q.E.D. Step: 3 Q.E.D. Result: Q.E.D. Lemma: ⊥ ≤ a Step: 1 Q.E.D. Step: 2 Q.E.D. Result: Q.E.D. Lemma: x \ y = x ⊓ yᶜ Q.E.D. Lemma: x ⇨ y = y ⊔ xᶜ Q.E.D. BooleanAlgebraProof { le_refl : [Proven] a ≤ a le_trans : [Proven] a ≤ b → b ≤ c → a ≤ c lt_iff_le_not_le: [Proven] a < b ↔ a ≤ b ∧ ¬b ≤ a le_antisymm : [Proven] a ≤ b → b ≤ a → a = b le_sup_left : [Proven] a ≤ a ⊔ b le_sup_right : [Proven] b ≤ a ⊔ b sup_le : [Proven] a ≤ c → b ≤ c → a ⊔ b ≤ c inf_le_left : [Proven] a ⊓ b ≤ a inf_le_right : [Proven] a ⊓ b ≤ b le_inf : [Proven] a ≤ b → a ≤ c → a ≤ b ⊓ c le_sup_inf : [Proven] (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ y ⊓ z inf_compl_le_bot: [Proven] x ⊓ xᶜ ≤ ⊥ top_le_sup_compl: [Proven] ⊤ ≤ x ⊔ xᶜ le_top : [Proven] a ≤ ⊤ bot_le : [Proven] ⊥ ≤ a sdiff_eq : [Proven] x \ y = x ⊓ yᶜ himp_eq : [Proven] x ⇨ y = y ⊔ xᶜ }-
simple-templates Web.Simple.Templates.Parser No documentation available.
-
singleraeh Singleraeh.Bool Singleton Bool.