Hoogle Search
Within LTS Haskell 24.28 (ghc-9.10.3)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
(
<$> ) :: Functor f => (a -> b) -> f a -> f bclassy-prelude ClassyPrelude An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.Examples
Convert from a Maybe Int to a Maybe String using show:>>> show <$> Nothing Nothing
>>> show <$> Just 3 Just "3"
Convert from an Either Int Int to an Either Int String using show:>>> show <$> Left 17 Left 17
>>> show <$> Right 17 Right "17"
Double each element of a list:>>> (*2) <$> [1,2,3] [2,4,6]
Apply even to the second element of a pair:>>> even <$> (2,2) (2,True)
(
<$> ) :: Functor f => (a -> b) -> f a -> f bghc-lib-parser GHC.Prelude.Basic An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.Examples
Convert from a Maybe Int to a Maybe String using show:>>> show <$> Nothing Nothing
>>> show <$> Just 3 Just "3"
Convert from an Either Int Int to an Either Int String using show:>>> show <$> Left 17 Left 17
>>> show <$> Right 17 Right "17"
Double each element of a list:>>> (*2) <$> [1,2,3] [2,4,6]
Apply even to the second element of a pair:>>> even <$> (2,2) (2,True)
(
<$> ) :: Functor f => (a -> b) -> f a -> f bghc-lib-parser GHC.Utils.Monad An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.Examples
Convert from a Maybe Int to a Maybe String using show:>>> show <$> Nothing Nothing
>>> show <$> Just 3 Just "3"
Convert from an Either Int Int to an Either Int String using show:>>> show <$> Left 17 Left 17
>>> show <$> Right 17 Right "17"
Double each element of a list:>>> (*2) <$> [1,2,3] [2,4,6]
Apply even to the second element of a pair:>>> even <$> (2,2) (2,True)
-
wl-pprint-text Text.PrettyPrint.Leijen.Text The document (x <$> y) concatenates document x and y with a line in between. (infixr 5)
(
<$> ) :: Applicative m => m Doc -> m Doc -> m Docwl-pprint-text Text.PrettyPrint.Leijen.Text.Monadic The document (x <$> y) concatenates document x and y with a line in between. (infixr 5)
(
<$> ) :: Functor f => (a -> b) -> f a -> f bfoundation Foundation An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.Examples
Convert from a Maybe Int to a Maybe String using show:>>> show <$> Nothing Nothing
>>> show <$> Just 3 Just "3"
Convert from an Either Int Int to an Either Int String using show:>>> show <$> Left 17 Left 17
>>> show <$> Right 17 Right "17"
Double each element of a list:>>> (*2) <$> [1,2,3] [2,4,6]
Apply even to the second element of a pair:>>> even <$> (2,2) (2,True)
(
<$> ) :: Functor f => (a -> b) -> f a -> f bshelly Shelly An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.Examples
Convert from a Maybe Int to a Maybe String using show:>>> show <$> Nothing Nothing
>>> show <$> Just 3 Just "3"
Convert from an Either Int Int to an Either Int String using show:>>> show <$> Left 17 Left 17
>>> show <$> Right 17 Right "17"
Double each element of a list:>>> (*2) <$> [1,2,3] [2,4,6]
Apply even to the second element of a pair:>>> even <$> (2,2) (2,True)
(
<$> ) :: Functor f => (a -> b) -> f a -> f bshelly Shelly.Lifted An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.Examples
Convert from a Maybe Int to a Maybe String using show:>>> show <$> Nothing Nothing
>>> show <$> Just 3 Just "3"
Convert from an Either Int Int to an Either Int String using show:>>> show <$> Left 17 Left 17
>>> show <$> Right 17 Right "17"
Double each element of a list:>>> (*2) <$> [1,2,3] [2,4,6]
Apply even to the second element of a pair:>>> even <$> (2,2) (2,True)
(
<$> ) :: Functor f => (a -> b) -> f a -> f bshelly Shelly.Pipe An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.Examples
Convert from a Maybe Int to a Maybe String using show:>>> show <$> Nothing Nothing
>>> show <$> Just 3 Just "3"
Convert from an Either Int Int to an Either Int String using show:>>> show <$> Left 17 Left 17
>>> show <$> Right 17 Right "17"
Double each element of a list:>>> (*2) <$> [1,2,3] [2,4,6]
Apply even to the second element of a pair:>>> even <$> (2,2) (2,True)
(
<$> ) :: Functor f => (a -> b) -> f a -> f bturtle Turtle An infix synonym for fmap. The name of this operator is an allusion to $. Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function application lifted over a Functor.Examples
Convert from a Maybe Int to a Maybe String using show:>>> show <$> Nothing Nothing
>>> show <$> Just 3 Just "3"
Convert from an Either Int Int to an Either Int String using show:>>> show <$> Left 17 Left 17
>>> show <$> Right 17 Right "17"
Double each element of a list:>>> (*2) <$> [1,2,3] [2,4,6]
Apply even to the second element of a pair:>>> even <$> (2,2) (2,True)