Hoogle Search

Within LTS Haskell 24.3 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. class GSemigroup f => GMonoid (f :: Type -> Type)

    semigroups Data.Semigroup.Generic

    No documentation available.

  2. newtype GenericSemigroupMonoid a

    semigroups Data.Semigroup.Generic

    An adapter newtype, suitable for DerivingVia. Its Semigroup and Monoid instances leverage the Generic-based defaults defined by gmappend and gmempty. Here is an example of how to use it:

    {-# LANGUAGE DerivingVia #-}
    import Data.Semigroup.Generic
    
    data Pair a = MkPair a a
    deriving (Semigroup, Monoid) via (GenericSemigroupMonoid (Pair a))
    

  3. GenericSemigroupMonoid :: a -> GenericSemigroupMonoid a

    semigroups Data.Semigroup.Generic

    No documentation available.

  4. getGenericSemigroupMonoid :: GenericSemigroupMonoid a -> a

    semigroups Data.Semigroup.Generic

    No documentation available.

  5. WrapMonoid :: m -> WrappedMonoid m

    base-compat Data.Semigroup.Compat

    No documentation available.

  6. newtype WrappedMonoid m

    base-compat Data.Semigroup.Compat

    Provide a Semigroup for an arbitrary Monoid. NOTE: This is not needed anymore since Semigroup became a superclass of Monoid in base-4.11 and this newtype be deprecated at some point in the future.

  7. stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a

    base-compat Data.Semigroup.Compat

    This is a valid definition of stimes for an idempotent Monoid. When x <> x = x, this definition should be preferred, because it works in <math> rather than <math>

  8. stimesMonoid :: (Integral b, Monoid a) => b -> a -> a

    base-compat Data.Semigroup.Compat

    This is a valid definition of stimes for a Monoid. Unlike the default definition of stimes, it is defined for 0 and so it should be preferred where possible.

  9. unwrapMonoid :: WrappedMonoid m -> m

    base-compat Data.Semigroup.Compat

    No documentation available.

  10. newtype ReflectedMonoid a (s :: k)

    reflection Data.Reflection

    No documentation available.

Page 7 of many | Previous | Next