Hoogle Search
Within LTS Haskell 24.4 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
-
containers Data.IntMap.Internal Map over the entries whose keys are missing from the other map, optionally removing some. This is the most powerful SimpleWhenMissing tactic, but others are usually more efficient.
mapMaybeMissing :: (Key -> x -> Maybe y) -> SimpleWhenMissing x y
mapMaybeMissing f = traverseMaybeMissing (\k x -> pure (f k x))
but mapMaybeMissing uses fewer unnecessary Applicative operations. mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap bcontainers Data.IntMap.Internal Map keys/values and collect the Just results.
let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"
mapMissing :: forall (f :: Type -> Type) x y . Applicative f => (Key -> x -> y) -> WhenMissing f x ycontainers Data.IntMap.Internal Map over the entries whose keys are missing from the other map.
mapMissing :: (k -> x -> y) -> SimpleWhenMissing x y
mapMissing f = mapMaybeMissing (\k x -> Just $ f k x)
but mapMissing is somewhat faster.mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap bcontainers Data.IntMap.Lazy Map values and collect the Just results.
let f x = if x == "a" then Just "new a" else Nothing mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"
mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap bcontainers Data.IntMap.Lazy Map keys/values and collect the Just results.
let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"
-
containers Data.IntMap.Merge.Lazy Map over the entries whose keys are missing from the other map, optionally removing some. This is the most powerful SimpleWhenMissing tactic, but others are usually more efficient.
mapMaybeMissing :: (Key -> x -> Maybe y) -> SimpleWhenMissing x y
mapMaybeMissing f = traverseMaybeMissing (\k x -> pure (f k x))
but mapMaybeMissing uses fewer unnecessary Applicative operations. mapMissing :: forall (f :: Type -> Type) x y . Applicative f => (Key -> x -> y) -> WhenMissing f x ycontainers Data.IntMap.Merge.Lazy Map over the entries whose keys are missing from the other map.
mapMissing :: (k -> x -> y) -> SimpleWhenMissing x y
mapMissing f = mapMaybeMissing (\k x -> Just $ f k x)
but mapMissing is somewhat faster.-
containers Data.IntMap.Merge.Strict Map over the entries whose keys are missing from the other map, optionally removing some. This is the most powerful SimpleWhenMissing tactic, but others are usually more efficient.
mapMaybeMissing :: (k -> x -> Maybe y) -> SimpleWhenMissing k x y
mapMaybeMissing f = traverseMaybeMissing (\k x -> pure (f k x))
but mapMaybeMissing uses fewer unnecessary Applicative operations. mapMissing :: forall (f :: Type -> Type) x y . Applicative f => (Key -> x -> y) -> WhenMissing f x ycontainers Data.IntMap.Merge.Strict Map over the entries whose keys are missing from the other map.
mapMissing :: (k -> x -> y) -> SimpleWhenMissing k x y
mapMissing f = mapMaybeMissing (\k x -> Just $ f k x)
but mapMissing is somewhat faster.mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap bcontainers Data.IntMap.Strict Map values and collect the Just results.
let f x = if x == "a" then Just "new a" else Nothing mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"