Hoogle Search

Within LTS Haskell 24.4 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. gmapM :: (Data a, Monad m) => (forall d . Data d => d -> m d) -> a -> m a

    rio RIO.Prelude.Types

    A generic monadic transformation that maps over the immediate subterms The default definition instantiates the type constructor c in the type of gfoldl to the monad datatype constructor, defining injection and projection using return and >>=.

  2. gmapMo :: (Data a, MonadPlus m) => (forall d . Data d => d -> m d) -> a -> m a

    rio RIO.Prelude.Types

    Transformation of one immediate subterm with success

  3. gmapMp :: (Data a, MonadPlus m) => (forall d . Data d => d -> m d) -> a -> m a

    rio RIO.Prelude.Types

    Transformation of at least one immediate subterm does not fail

  4. gmapQ :: Data a => (forall d . Data d => d -> u) -> a -> [u]

    rio RIO.Prelude.Types

    A generic query that processes the immediate subterms and returns a list of results. The list is given in the same order as originally specified in the declaration of the data constructors.

  5. gmapQi :: Data a => Int -> (forall d . Data d => d -> u) -> a -> u

    rio RIO.Prelude.Types

    A generic query that processes one child by index (zero-based)

  6. gmapQl :: Data a => (r -> r' -> r) -> r -> (forall d . Data d => d -> r') -> a -> r

    rio RIO.Prelude.Types

    A generic query with a left-associative binary operator

  7. gmapQr :: forall r r' . Data a => (r' -> r -> r) -> r -> (forall d . Data d => d -> r') -> a -> r

    rio RIO.Prelude.Types

    A generic query with a right-associative binary operator

  8. gmapT :: Data a => (forall b . Data b => b -> b) -> a -> a

    rio RIO.Prelude.Types

    A generic transformation that maps over the immediate subterms The default definition instantiates the type constructor c in the type of gfoldl to an identity datatype constructor, using the isomorphism pair as injection and projection.

  9. bimap :: Bifunctor p => (a -> b) -> (c -> d) -> p a c -> p b d

    diagrams-lib Diagrams.Prelude

    Map over both arguments at the same time.

    bimap f g ≡ first f . second g
    

    Examples

    >>> bimap toUpper (+1) ('j', 3)
    ('J',4)
    
    >>> bimap toUpper (+1) (Left 'j')
    Left 'J'
    
    >>> bimap toUpper (+1) (Right 3)
    Right 4
    

  10. bimapping :: forall (f :: Type -> Type -> Type) (g :: Type -> Type -> Type) s t a b s' t' a' b' . (Bifunctor f, Bifunctor g) => AnIso s t a b -> AnIso s' t' a' b' -> Iso (f s s') (g t t') (f a a') (g b b')

    diagrams-lib Diagrams.Prelude

    Lift two Isos into both arguments of a Bifunctor.

    bimapping :: Bifunctor p => Iso s t a b -> Iso s' t' a' b' -> Iso (p s s') (p t t') (p a a') (p b b')
    bimapping :: Bifunctor p => Iso' s a -> Iso' s' a' -> Iso' (p s s') (p a a')
    

Page 19 of many | Previous | Next