Hoogle Search

Within LTS Haskell 24.4 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. imapAccumROf :: Over (Indexed i) (Backwards (State acc)) s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)

    diagrams-lib Diagrams.Prelude

    Generalizes mapAccumR to an arbitrary IndexedTraversal with access to the index. imapAccumROf accumulates state from right to left.

    mapAccumROf l ≡ imapAccumROf l . const
    
    imapAccumROf :: IndexedLens i s t a b      -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
    imapAccumROf :: IndexedTraversal i s t a b -> (i -> acc -> a -> (acc, b)) -> acc -> s -> (acc, t)
    

  2. imapM :: (TraversableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m (t b)

    diagrams-lib Diagrams.Prelude

    Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results, with access the index. When you don't need access to the index mapM is more liberal in what it can accept.

    mapMimapM . const
    

  3. imapMOf :: Over (Indexed i) (WrappedMonad m) s t a b -> (i -> a -> m b) -> s -> m t

    diagrams-lib Diagrams.Prelude

    Map each element of a structure targeted by a Lens to a monadic action, evaluate these actions from left to right, and collect the results, with access its position. When you don't need access to the index mapMOf is more liberal in what it can accept.

    mapMOf l ≡ imapMOf l . const
    
    imapMOf :: Monad m => IndexedLens       i s t a b -> (i -> a -> m b) -> s -> m t
    imapMOf :: Monad m => IndexedTraversal  i s t a b -> (i -> a -> m b) -> s -> m t
    imapMOf :: Bind  m => IndexedTraversal1 i s t a b -> (i -> a -> m b) -> s -> m t
    

  4. imapMOf_ :: Monad m => IndexedGetting i (Sequenced r m) s a -> (i -> a -> m r) -> s -> m ()

    diagrams-lib Diagrams.Prelude

    Run monadic actions for each target of an IndexedFold or IndexedTraversal with access to the index, discarding the results. When you don't need access to the index then mapMOf_ is more flexible in what it accepts.

    mapMOf_ l ≡ imapMOf l . const
    
    imapMOf_ :: Monad m => IndexedGetter i s a     -> (i -> a -> m r) -> s -> m ()
    imapMOf_ :: Monad m => IndexedFold i s a       -> (i -> a -> m r) -> s -> m ()
    imapMOf_ :: Monad m => IndexedLens' i s a      -> (i -> a -> m r) -> s -> m ()
    imapMOf_ :: Monad m => IndexedTraversal' i s a -> (i -> a -> m r) -> s -> m ()
    

  5. imapM_ :: (FoldableWithIndex i t, Monad m) => (i -> a -> m b) -> t a -> m ()

    diagrams-lib Diagrams.Prelude

    Run monadic actions for each target of an IndexedFold or IndexedTraversal with access to the index, discarding the results. When you don't need access to the index then mapMOf_ is more flexible in what it accepts.

    mapM_imapM . const
    

  6. imapOf :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t

    diagrams-lib Diagrams.Prelude

    Map with index. (Deprecated alias for iover). When you do not need access to the index, then mapOf is more liberal in what it can accept.

    mapOf l ≡ imapOf l . const
    
    imapOf :: IndexedSetter i s t a b    -> (i -> a -> b) -> s -> t
    imapOf :: IndexedLens i s t a b      -> (i -> a -> b) -> s -> t
    imapOf :: IndexedTraversal i s t a b -> (i -> a -> b) -> s -> t
    

  7. imapped :: forall i (f :: Type -> Type) a b . FunctorWithIndex i f => IndexedSetter i (f a) (f b) a b

    diagrams-lib Diagrams.Prelude

    The IndexedSetter for a FunctorWithIndex. If you don't need access to the index, then mapped is more flexible in what it accepts.

  8. lmap :: Profunctor p => (a -> b) -> p b c -> p a c

    diagrams-lib Diagrams.Prelude

    Map the first argument contravariantly.

    lmap f ≡ dimap f id
    

  9. lmapping :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) s t a b x y . (Profunctor p, Profunctor q) => AnIso s t a b -> Iso (p a x) (q b y) (p s x) (q t y)

    diagrams-lib Diagrams.Prelude

    Lift an Iso contravariantly into the left argument of a Profunctor.

    lmapping :: Profunctor p => Iso s t a b -> Iso (p a x) (p b y) (p s x) (p t y)
    lmapping :: Profunctor p => Iso' s a -> Iso' (p a x) (p s x)
    

  10. rmap :: Profunctor p => (b -> c) -> p a b -> p a c

    diagrams-lib Diagrams.Prelude

    Map the second argument covariantly.

    rmapdimap id
    

Page 22 of many | Previous | Next