Hoogle Search

Within LTS Haskell 24.4 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. set :: AggregatingSet a -> AggregatingSetList a

    relational-schemas Database.Custom.IBMDB2

    Finalize and specify single grouping set.

  2. set :: AggregatingSet a -> AggregatingSetList a

    relational-schemas Database.Custom.MySQL

    Finalize and specify single grouping set.

  3. set :: AggregatingSet a -> AggregatingSetList a

    relational-schemas Database.Custom.Oracle

    Finalize and specify single grouping set.

  4. set :: AggregatingSet a -> AggregatingSetList a

    relational-schemas Database.Custom.PostgreSQL

    Finalize and specify single grouping set.

  5. set :: AggregatingSet a -> AggregatingSetList a

    relational-schemas Database.Custom.SQLServer

    Finalize and specify single grouping set.

  6. set :: AggregatingSet a -> AggregatingSetList a

    relational-schemas Database.Custom.SQLite3

    Finalize and specify single grouping set.

  7. set :: Lens a b -> b -> a -> a

    strive Strive.Lenses

    Set a field in a record.

  8. class (Applicative f, Distributive f, Traversable f) => Settable (f :: Type -> Type)

    lens Control.Lens.Combinators

    Anything Settable must be isomorphic to the Identity Functor.

  9. type Setter s t a b = forall (f :: Type -> Type) . Settable f => a -> f b -> s -> f t

    lens Control.Lens.Combinators

    The only LensLike law that can apply to a Setter l is that

    set l y (set l x a) ≡ set l y a
    
    You can't view a Setter in general, so the other two laws are irrelevant. However, two Functor laws apply to a Setter:
    over l idid
    over l f . over l g ≡ over l (f . g)
    
    These can be stated more directly:
    l purepure
    l f . untainted . l g ≡ l (f . untainted . g)
    
    You can compose a Setter with a Lens or a Traversal using (.) from the Prelude and the result is always only a Setter and nothing more.
    >>> over traverse f [a,b,c,d]
    [f a,f b,f c,f d]
    
    >>> over _1 f (a,b)
    (f a,b)
    
    >>> over (traverse._1) f [(a,b),(c,d)]
    [(f a,b),(f c,d)]
    
    >>> over both f (a,b)
    (f a,f b)
    
    >>> over (traverse.both) f [(a,b),(c,d)]
    [(f a,f b),(f c,f d)]
    

  10. Setter :: Setter s t a b -> ReifiedSetter s t a b

    lens Control.Lens.Combinators

    No documentation available.

Page 22 of many | Previous | Next