Hoogle Search

Within LTS Haskell 24.4 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. (%&) :: forall k (is :: IxList) s t a b l (js :: IxList) s' t' a' b' . Optic k is s t a b -> (Optic k is s t a b -> Optic l js s' t' a' b') -> Optic l js s' t' a' b'

    optics-core Optics.Optic

    Flipped function application, specialised to optics and binding tightly. Useful for post-composing optics transformations:

    >>> toListOf (ifolded %& ifiltered (\i s -> length s <= i)) ["", "a","abc"]
    ["","a"]
    

  2. (%:) :: forall (m :: Type -> Type) r a . Monad m => T r a -> (a -> a) -> StateT r m ()

    data-accessor Data.Accessor

    Infix variant of modify.

  3. (%=) :: forall (m :: Type -> Type) r a . Monad m => T r a -> a -> StateT r m ()

    data-accessor Data.Accessor

    Infix variant of set.

  4. (%:) :: forall (m :: Type -> Type) r a . Monad m => T r a -> (a -> a) -> StateT r m ()

    data-accessor Data.Accessor.MonadState

    Infix variant of modify.

  5. (%=) :: forall (m :: Type -> Type) r a . Monad m => T r a -> a -> StateT r m ()

    data-accessor Data.Accessor.MonadState

    Infix variant of set.

  6. (%~) :: ASetter s t a b -> (a -> b) -> s -> t

    rio RIO

    (%~) applies a function to the target; an alternative explanation is that it is an inverse of sets, which turns a setter into an ordinary function. mapped %~ reverse is the same thing as fmap reverse. See over if you want a non-operator synonym. Negating the 1st element of a pair:

    >>> (1,2) & _1 %~ negate
    (-1,2)
    
    Turning all Lefts in a list to upper case:
    >>> (mapped._Left.mapped %~ toUpper) [Left "foo", Right "bar"]
    [Left "FOO",Right "bar"]
    

  7. (%%@=) :: MonadState s m => Over (Indexed i) ((,) r) s s a b -> (i -> a -> (r, b)) -> m r

    diagrams-lib Diagrams.Prelude

    Adjust the target of an IndexedLens returning a supplementary result, or adjust all of the targets of an IndexedTraversal within the current state, and return a monoidal summary of the supplementary results.

    l %%@= f ≡ state (l %%@~ f)
    
    (%%@=) :: MonadState s m                 => IndexedLens i s s a b      -> (i -> a -> (r, b)) -> s -> m r
    (%%@=) :: (MonadState s m, Monoid r) => IndexedTraversal i s s a b -> (i -> a -> (r, b)) -> s -> m r
    

  8. (%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()

    diagrams-lib Diagrams.Prelude

    Map over the target of a Lens or all of the targets of a Setter or Traversal in our monadic state.

    >>> execState (do _1 %= f;_2 %= g) (a,b)
    (f a,g b)
    
    >>> execState (do both %= f) (a,b)
    (f a,f b)
    
    (%=) :: MonadState s m => Iso' s a       -> (a -> a) -> m ()
    (%=) :: MonadState s m => Lens' s a      -> (a -> a) -> m ()
    (%=) :: MonadState s m => Traversal' s a -> (a -> a) -> m ()
    (%=) :: MonadState s m => Setter' s a    -> (a -> a) -> m ()
    
    (%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()
    

  9. (%@=) :: MonadState s m => AnIndexedSetter i s s a b -> (i -> a -> b) -> m ()

    diagrams-lib Diagrams.Prelude

    Adjust every target in the current state of an IndexedSetter, IndexedLens or IndexedTraversal with access to the index. When you do not need access to the index then (%=) is more liberal in what it can accept.

    l %= f ≡ l %@= const f
    
    (%@=) :: MonadState s m => IndexedSetter i s s a b    -> (i -> a -> b) -> m ()
    (%@=) :: MonadState s m => IndexedLens i s s a b      -> (i -> a -> b) -> m ()
    (%@=) :: MonadState s m => IndexedTraversal i s t a b -> (i -> a -> b) -> m ()
    

  10. (%@~) :: AnIndexedSetter i s t a b -> (i -> a -> b) -> s -> t

    diagrams-lib Diagrams.Prelude

    Adjust every target of an IndexedSetter, IndexedLens or IndexedTraversal with access to the index.

    (%@~) ≡ iover
    
    When you do not need access to the index then (%~) is more liberal in what it can accept.
    l %~ f ≡ l %@~ const f
    
    (%@~) :: IndexedSetter i s t a b    -> (i -> a -> b) -> s -> t
    (%@~) :: IndexedLens i s t a b      -> (i -> a -> b) -> s -> t
    (%@~) :: IndexedTraversal i s t a b -> (i -> a -> b) -> s -> t
    

Page 7 of many | Previous | Next