Hoogle Search

Within LTS Haskell 24.6 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. map :: MonoidNull v2 => (v1 -> v2) -> MonoidMap k v1 -> MonoidMap k v2

    monoidmap-internal Data.MonoidMap.Internal

    Applies a function to all non-null values of a MonoidMap. Satisfies the following properties for all functions f:

    (get k m == mempty) ==> (get k (map f m) == mempty     )
    (get k m /= mempty) ==> (get k (map f m) == f (get k m))
    

    Conditional properties

    If applying function f to mempty produces mempty, then the following additional properties hold:
    (f mempty == mempty)
    ==>
    (∀ k. get k (map f m) == f (get k m))
    
    (f mempty == mempty)
    ==>
    (∀ g. map (f . g) m == map f (map g m))
    

  2. map :: (v1 -> v2) -> Map k v1 -> Map k v2

    monoidmap-internal Data.MonoidMap.Internal.RecoveredMap

    No documentation available.

  3. map :: (Key -> Key) -> IntMultiSet -> IntMultiSet

    multiset Data.IntMultiSet

    O(n*log n). map f s is the multiset obtained by applying f to each element of s.

  4. map :: Ord b => (a -> b) -> MultiSet a -> MultiSet b

    multiset Data.MultiSet

    O(n*log n). map f s is the multiset obtained by applying f to each element of s.

  5. map :: forall c f (r :: Row Type) . Forall r c => (forall a . c a => a -> f a) -> Rec r -> Rec (Map f r)

    row-types Data.Row.Records

    A function to map over a record given a constraint.

  6. map :: forall c f (r :: Row Type) . Forall r c => (forall a . c a => a -> f a) -> Var r -> Var (Map f r)

    row-types Data.Row.Variants

    A function to map over a variant given a constraint.

  7. map :: (SymVal a, SymVal b) => (SBV a -> SBV b) -> SList a -> SList b

    sbv Data.SBV.List

    map f s maps the operation on to sequence.

    >>> map (+1) [1 .. 5 :: Integer]
    [2,3,4,5,6] :: [SInteger]
    
    >>> map (+1) [1 .. 5 :: WordN 8]
    [2,3,4,5,6] :: [SWord8]
    
    >>> map singleton [1 .. 3 :: Integer]
    [[1],[2],[3]] :: [[SInteger]]
    
    >>> import Data.SBV.Tuple
    
    >>> import GHC.Exts (fromList)
    
    >>> map (\t -> t^._1 + t^._2) (fromList [(x, y) | x <- [1..3], y <- [4..6]] :: SList (Integer, Integer))
    [5,6,7,6,7,8,7,8,9] :: [SInteger]
    
    Of course, SBV's map can also be reused in reverse:
    >>> sat $ \l -> map (+1) l .== [1,2,3 :: Integer]
    Satisfiable. Model:
    s0 = [0,1,2] :: [Integer]
    

  8. map :: (SymVal a, SymVal b) => (SBV a -> SBV b) -> SMaybe a -> SMaybe b

    sbv Data.SBV.Maybe

    Map over the Just side of a Maybe.

    >>> prove $ \x -> fromJust (map (+1) (sJust x)) .== x+(1::SInteger)
    Q.E.D.
    
    >>> let f = uninterpret "f" :: SInteger -> SBool
    
    >>> prove $ \x -> map f (sJust x) .== sJust (f x)
    Q.E.D.
    
    >>> map f sNothing .== sNothing
    True
    

  9. map :: forall (m :: Type -> Type) a b . Monad m => (a -> b) -> Pipe m a b

    streamly-core Streamly.Internal.Data.Pipe

    Lift a pure function to a Pipe.

  10. map :: forall (m :: Type -> Type) a b . Monad m => (a -> b) -> Stream m a -> Stream m b

    streamly-core Streamly.Internal.Data.Stream

    No documentation available.

Page 35 of many | Previous | Next