Hoogle Search
Within LTS Haskell 24.6 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
mapKeys :: (Key -> Key) -> Word64Map a -> Word64Map aghc GHC.Data.Word64Map.Strict.Internal mapKeys f s is the map obtained by applying f to each key of s. The size of the result may be smaller if f maps two or more distinct keys to the same new key. In this case the value at the greatest of the original keys is retained.
mapKeys (+ 1) (fromList [(5,"a"), (3,"b")]) == fromList [(4, "b"), (6, "a")] mapKeys (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "c" mapKeys (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "c"
mapKeysMonotonic :: (Key -> Key) -> Word64Map a -> Word64Map aghc GHC.Data.Word64Map.Strict.Internal mapKeysMonotonic f s == mapKeys f s, but works only when f is strictly monotonic. That is, for any values x and y, if x < y then f x < f y. The precondition is not checked. Semi-formally, we have:
and [x < y ==> f x < f y | x <- ls, y <- ls] ==> mapKeysMonotonic f s == mapKeys f s where ls = keys s
This means that f maps distinct original keys to distinct resulting keys. This function has slightly better performance than mapKeys.mapKeysMonotonic (\ k -> k * 2) (fromList [(5,"a"), (3,"b")]) == fromList [(6, "b"), (10, "a")]
mapKeysWith :: (a -> a -> a) -> (Key -> Key) -> Word64Map a -> Word64Map aghc GHC.Data.Word64Map.Strict.Internal mapKeysWith c f s is the map obtained by applying f to each key of s. The size of the result may be smaller if f maps two or more distinct keys to the same new key. In this case the associated values will be combined using c.
mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab" mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab"
mapMaybe :: (a -> Maybe b) -> Word64Map a -> Word64Map bghc GHC.Data.Word64Map.Strict.Internal Map values and collect the Just results.
let f x = if x == "a" then Just "new a" else Nothing mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a"
mapMaybeWithKey :: (Key -> a -> Maybe b) -> Word64Map a -> Word64Map bghc GHC.Data.Word64Map.Strict.Internal Map keys/values and collect the Just results.
let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3"
mapWithKey :: (Key -> a -> b) -> Word64Map a -> Word64Map bghc GHC.Data.Word64Map.Strict.Internal Map a function over all values in the map.
let f key x = (show key) ++ ":" ++ x mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")]
mapMonotonic :: (Key -> Key) -> Word64Set -> Word64Setghc GHC.Data.Word64Set The mapMonotonic f s == map f s, but works only when f is strictly increasing. The precondition is not checked. Semi-formally, we have:
and [x < y ==> f x < f y | x <- ls, y <- ls] ==> mapMonotonic f s == map f s where ls = toList s
mapMonotonic :: (Key -> Key) -> Word64Set -> Word64Setghc GHC.Data.Word64Set.Internal The mapMonotonic f s == map f s, but works only when f is strictly increasing. The precondition is not checked. Semi-formally, we have:
and [x < y ==> f x < f y | x <- ls, y <- ls] ==> mapMonotonic f s == map f s where ls = toList s
mapPlugins :: Plugins -> (Plugin -> [CommandLineOption] -> a) -> [a]ghc GHC.Driver.Plugins No documentation available.
-
ghc GHC.Hs.Decls Map over the via type if dealing with ViaStrategy. Otherwise, return the DerivStrategy unchanged.