Hoogle Search

Within LTS Haskell 24.6 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. data IxMap (f :: k -> k1 -> Type -> Type) (i :: k) (j :: k1) x

    indexed-transformers Control.Monad.Trans.Indexed.Free

    IxMap is the free IxFunctor. It's a left Kan extension. Combining IxMonadTransFree with IxMap as demonstrated in the above example, gives the "freer" IxMonadTrans, modeled on this Oleg Kiselyov explanation.

  2. type IxAffineTraversalVL i s t a b = forall (f :: Type -> Type) . Functor f => forall r . () => r -> f r -> i -> a -> f b -> s -> f t

    optics-vl Optics.VL

    Type synonym for a type-modifying van Laarhoven indexed affine traversal. Note: this isn't exactly van Laarhoven representation as there is no Pointed class (which would be a superclass of Applicative that contains pure but not <*>). You can interpret the first argument as a dictionary of Pointed that supplies the point function (i.e. the implementation of pure).

  3. type IxAffineTraversalVL' i s a = IxAffineTraversalVL i s s a a

    optics-vl Optics.VL

    Type synonym for a type-preserving van Laarhoven indexed affine traversal.

  4. type IxLensVL i s t a b = forall (f :: Type -> Type) . Functor f => i -> a -> f b -> s -> f t

    optics-vl Optics.VL

    Type synonym for a type-modifying van Laarhoven indexed lens.

  5. type IxLensVL' i s a = IxLensVL i s s a a

    optics-vl Optics.VL

    Type synonym for a type-preserving van Laarhoven indexed lens.

  6. type IxTraversalVL i s t a b = forall (f :: Type -> Type) . Applicative f => i -> a -> f b -> s -> f t

    optics-vl Optics.VL

    Type synonym for a type-modifying van Laarhoven indexed traversal.

  7. type IxTraversalVL' i s a = IxTraversalVL i s s a a

    optics-vl Optics.VL

    Type synonym for a type-preserving van Laarhoven indexed traversal.

  8. floatRadix :: RealFloat a => a -> Integer

    base Prelude

    a constant function, returning the radix of the representation (often 2)

  9. isInfixOf :: Eq a => [a] -> [a] -> Bool

    base Data.List

    The isInfixOf function takes two lists and returns True iff the first list is contained, wholly and intact, anywhere within the second.

    Examples

    >>> isInfixOf "Haskell" "I really like Haskell."
    True
    
    >>> isInfixOf "Ial" "I really like Haskell."
    False
    
    For the result to be True, the first list must be finite; for the result to be False, the second list must be finite:
    >>> [20..50] `isInfixOf` [0..]
    True
    
    >>> [0..] `isInfixOf` [20..50]
    False
    
    >>> [0..] `isInfixOf` [0..]
    * Hangs forever *
    

  10. isPrefixOf :: Eq a => [a] -> [a] -> Bool

    base Data.List

    The isPrefixOf function takes two lists and returns True iff the first list is a prefix of the second.

    Examples

    >>> "Hello" `isPrefixOf` "Hello World!"
    True
    
    >>> "Hello" `isPrefixOf` "Wello Horld!"
    False
    
    For the result to be True, the first list must be finite; False, however, results from any mismatch:
    >>> [0..] `isPrefixOf` [1..]
    False
    
    >>> [0..] `isPrefixOf` [0..99]
    False
    
    >>> [0..99] `isPrefixOf` [0..]
    True
    
    >>> [0..] `isPrefixOf` [0..]
    * Hangs forever *
    
    isPrefixOf shortcuts when the first argument is empty:
    >>> isPrefixOf [] undefined
    True
    

Page 20 of many | Previous | Next