Hoogle Search

Within LTS Haskell 24.6 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. mapKeysMonotonic :: (k -> k') -> AssocList k v -> AssocList k' v

    Agda Agda.Utils.AssocList

    O(n). Named in analogy to mapKeysMonotonic. To preserve the invariant, it is sufficient that the key transformation is injective (rather than monotonic).

  2. mapWithKey :: (k -> v -> v) -> AssocList k v -> AssocList k v

    Agda Agda.Utils.AssocList

    O(n). Map over an association list, preserving the order.

  3. mapWithKeyM :: Applicative m => (k -> v -> m v) -> AssocList k v -> m (AssocList k v)

    Agda Agda.Utils.AssocList

    O(n). If called with a effect-producing function, violation of the invariant could matter here (duplicating effects).

  4. mapBenchmarkOn :: (BenchmarkOn a -> BenchmarkOn a) -> Benchmark a -> Benchmark a

    Agda Agda.Utils.Benchmark

    Semantic editor combinator.

  5. mapCurrentAccount :: (CurrentAccount a -> CurrentAccount a) -> Benchmark a -> Benchmark a

    Agda Agda.Utils.Benchmark

    Semantic editor combinator.

  6. mapTimings :: (Timings a -> Timings a) -> Benchmark a -> Benchmark a

    Agda Agda.Utils.Benchmark

    Semantic editor combinator.

  7. mapWithKey :: (Ord k, Ord (Tag v), HasTag v) => (k -> v -> v) -> BiMap k v -> BiMap k v

    Agda Agda.Utils.BiMap

    Changes all the values using the given function, which is also given access to keys. O(n log n). Precondition: See mapWithKeyPrecondition.

  8. mapWithKeyFixedTags :: (k -> v -> v) -> BiMap k v -> BiMap k v

    Agda Agda.Utils.BiMap

    Changes all the values using the given function, which is also given access to keys. O(n). Precondition: See mapWithKeyFixedTagsPrecondition. Note that tags must not change.

  9. mapWithKeyFixedTagsPrecondition :: (Eq v, Eq (Tag v), HasTag v) => (k -> v -> v) -> BiMap k v -> Bool

    Agda Agda.Utils.BiMap

    The precondition for mapWithKeyFixedTags f m is that, if m maps k to v, then tag (f k v) == tag v.

  10. mapWithKeyPrecondition :: (Eq k, Eq v, Eq (Tag v), HasTag v) => (k -> v -> v) -> BiMap k v -> Bool

    Agda Agda.Utils.BiMap

    The precondition for mapWithKey f m: For any two distinct mappings k₁ ↦ v₁, k₂ ↦ v₂ in m for which the tags of f k₁ v₁ and f k₂ v₂ are defined the values of f must be distinct (f k₁ v₁ ≠ f k₂ v₂). Furthermore tag must be injective for { f k v | (k, v) ∈ m }.

Page 271 of many | Previous | Next