Hoogle Search

Within LTS Haskell 24.6 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. ravUnbounded :: RealAbstractValue

    what4 What4.Utils.AbstractDomains

    No documentation available.

  2. unboundedRange :: ValueRange tp

    what4 What4.Utils.AbstractDomains

    Defines a unbounded value range.

  3. unboundedIntegerScalar :: MaxInputSize -> Signed -> NumeralSystem -> Scalar Integer

    yaml-unscrambler YamlUnscrambler

    Numeric scalar parser into any integer value.

  4. UnboundedIntegerScalar :: MaxInputSize -> Signed -> NumeralSystem -> Scalar

    yaml-unscrambler YamlUnscrambler.Expectations

    No documentation available.

  5. wordBounded :: String -> String

    Agda Agda.Interaction.Highlighting.Vim

    No documentation available.

  6. productOfEdgesInBoundedWalk :: (SemiRing e, Ord n) => (e -> Occurrence) -> Graph n e -> n -> n -> Occurrence -> Maybe e

    Agda Agda.TypeChecking.Positivity.Occurrence

    productOfEdgesInBoundedWalk occ g u v bound returns a value distinct from Nothing iff there is a walk c (a list of edges) in g, from u to v, for which the product foldr1 otimes (map occ c) <= bound. In this case the returned value is Just (foldr1 otimes c) for one such walk c. Preconditions: u and v must belong to g, and bound must belong to the domain of boundToEverySome.

  7. isBounded :: PureTCM m => Nat -> m BoundedSize

    Agda Agda.TypeChecking.SizedTypes

    Check whether a variable in the context is bounded by a size expression. If x : Size< a, then a is returned.

  8. isBoundedProjVar :: (MonadCheckInternal m, PureTCM m) => ProjectedVar -> m BoundedSize

    Agda Agda.TypeChecking.SizedTypes

    No documentation available.

  9. isBoundedSizeType :: PureTCM m => Type -> m BoundedSize

    Agda Agda.TypeChecking.SizedTypes

    No documentation available.

  10. newBoundedChan :: Int -> IO (BoundedChan a)

    BoundedChan Control.Concurrent.BoundedChan

    newBoundedChan n returns a channel than can contain no more than n elements.

Page 39 of many | Previous | Next