Hoogle Search
Within LTS Haskell 24.7 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
-
protobuf-simple Data.ProtoBufInt Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
- If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
- the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
- If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent toinstance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,- show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
-
classy-prelude-yesod ClassyPrelude.Yesod Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
- If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
- the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
- If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent toinstance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,- show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
-
constrained-categories Control.Category.Constrained.Prelude Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
- If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
- the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
- If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent toinstance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,- show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
-
constrained-categories Control.Category.Hask Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
- If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
- the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
- If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent toinstance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,- show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
-
copilot-language Copilot.Language.Prelude Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
- If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
- the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
- If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent toinstance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,- show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
-
quaalude Essentials Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
- If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
- the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
- If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent toinstance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,- show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
-
verset Verset Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
- If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
- the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
- If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent toinstance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,- show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
-
xmonad-contrib XMonad.Config.Prime Conversion of values to readable Strings. Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
- If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
- the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
- If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent toinstance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,- show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
-
base Prelude A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.
-
base Text.Show A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.