Generic random generators

Generic.Random.Data
Define sized random generators for almost any type.
{-# LANGUAGE DeriveDataTypeable #-}
import Data.Data
import Test.QuickCheck
import Generic.Random.Data
data Term = Lambda Int Term | App Term Term | Var Int
deriving (Show, Data)
instance Arbitrary Term where
arbitrary = sized $ generatorPWith [positiveInts]
positiveInts :: Alias Gen
positiveInts =
alias $ \() -> fmap getPositive arbitrary :: Gen Int
main = sample (arbitrary :: Gen Term)
- Objects of the same size (number of constructors) occur with the same
probability (see Duchon et al., references below).
- Implements rejection sampling and pointing.
- Uses
Data.Data
generics.
- Works with QuickCheck and MonadRandom, but also similar user-defined monads
for randomness (just implement
MonadRandomLike
).
- Can be tweaked somewhat with user defined generators.
Generic.Random.Generic
Say goodbye to Constructor <$> arbitrary <*> arbitrary <*> arbitrary
-boilerplate.
{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics ( Generic )
import Test.QuickCheck
import Generic.Random.Generic
data Tree a = Leaf | Node (Tree a) a (Tree a)
deriving (Show, Generic)
instance Arbitrary a => Arbitrary (Tree a) where
arbitrary = genericArbitrary' Z uniform
-- Equivalent to
-- > arbitrary =
-- > sized $ \n ->
-- > if n == 0 then
-- > return Leaf
-- > else
-- > oneof
-- > [ return Leaf
-- > , Node <$> arbitrary <*> arbitrary <*> arbitrary
-- > ]
main = sample (arbitrary :: Gen (Tree ()))
- User-specified distribution of constructors, with compile-time checks.
- A simple (optional) strategy to ensure termination:
Test.QuickCheck.Gen
’s
size parameter decreases at every recursive genericArbitrary'
call; when it
reaches zero, sample directly from a finite set of finite values.
- Uses
GHC.Generics
generics.
- Just for QuickCheck’s
arbitrary
.
- More flexible than
Generic.Random.Data
’s Boltzmann samplers, which compute
fixed weights for a given target size and concrete type, but with a less
regular distribution.
Generic.Random.Boltzmann
An experimental interface to obtain Boltzmann samplers from an applicative
specification of a combinatorial system.
No documentation (yet).
References
Papers about Boltzmann samplers, used in Generic.Random.Data
: