MIT licensed by Li-yao Xia
Maintained by
This version can be pinned in stack with:generic-functor-,1281

Module documentation for

Depends on 2 packages(full list with versions):

Generic functors Hackage pipeline status

Implementation of Functor instances and other functor-like structures using GHC.Generics.

Functors not over the last type parameter

The standard Functor class only applies to types that are functors over their last type parameter. For example, in Either e r, fmap maps only r.

Using this library, fmap-like functions can be derived over any type parameter of a Generic data type, all from the same definition gsolomap.

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics (Generic)
import Generic.Functor (gsolomap)

data Result a r = Error a | Ok r   -- Another name for Either
  deriving Generic

mapError :: (a -> b) -> Result a r -> Result b r
mapError = gsolomap

-- This one is fmap
mapOk :: (a -> b) -> Result e a -> Result e b
mapOk = gsolomap

mapBoth :: (a -> b) -> Result a a -> Result b b
mapBoth = gsolomap

gsolomap is unsafe. Misuse will break your program. Read on for specifics.


gsolomap should only be used to define polymorphicfmap-like functions” for Generic types.

The signature of gsolomap is:

gsolomap :: (Generic x, Generic y, GSolomap a b x y) => (a -> b) -> (x -> y)

The types x and y must be specializations of the same user-defined data type which is an instance of Generic, with some type parameters equal to a or b respectively. At use sites of gsolomap, a and b must also be two distinct universally quantified type variables, with no equality constraint relating them with each other or any other type.

The guarantee is that gsolomap satisfies gsolomap id = id. Under the condition that a and b are abstract, that equation uniquely determines the implementation. (That uniqueness claim may be broken with GADTs and other explicit uses of type equality constraints.)

In particular, gsolomap must not be specialized with types a and b that are equal. A function defined using gsolomap is safe to specialize once the GSolomap constraint has been discharged.

For instance the three functions above, mapError, mapOk, mapBoth are sufficiently polymorphic. They are each uniquely determined by their types and the equation mapX id = id. (Without that equation, mapBoth has four implementations of the same type.)

Compositions of functors

How many fmap do you need to map a function a -> b over (t, Maybe [Either Bool a])?

You only need one solomap:

type F t a = (t, Maybe [Either Bool a])

maps :: (a -> b) -> F t a -> F t b
maps = solomap

solomap can also see through bifunctors and there may be more than one occurrence of the type parameter a.

type F a = ([a], Either a ())

maps2 :: (a -> b) -> F a -> F b
maps2 = solomap

solomap is unsafe, subject to the same restrictions as gsolomap: where solomap is used, the type of its first argument (a -> b) must refer to two distinct universally quantified variables a and b. Functions are safe to specialize only once the Solomap constraint is out of their contexts.

solomap :: Solomap a b x y => (a -> b) -> (x -> y)

Functors of multiple parameters

You can also map with more than one function simultaneously. For example with a -> b and c -> d over (Maybe a, [(c, a)]):

type F a c = (Maybe a, [(c, a)])

bimaps :: (a -> b) -> (c -> d) -> F a c -> F b d
bimaps f g = multimap (f :+ g :+ ())

multimap takes a list of functions separated by (:+) and terminated by ().

There is also a gmultimap, generalizing gsolomap.

gmultimap and multimap are unsafe, similarly to gsolomap and solomap.

Deriving Functor

This library enables DerivingVia for the Functor class.

{-# LANGUAGE DeriveGeneric, DerivingVia #-}

import GHC.Generics (Generic)
import Generic.Functor (GenericFunctor(..))

data Twice a = Twice (Either a a)
  deriving Generic
  deriving Functor via (GenericFunctor Twice)

Note that there is already built-in support for deriving Functor in GHC with the DeriveFunctor extension instead. If that extension ever chokes on a type, this library might have a chance at handling it. (Open an issue if it does not!)

The Twice example just above is not handled by the DeriveFunctor extension:

{-# LANGUAGE DeriveFunctor #-}

data Twice a = Twice (Either a a) deriving Functor

    • Can't make a derived instance of ‘Functor Twice’:
        Constructor ‘Twice’ must use the type variable only as the last argument of a data type

The generic-data library also includes a generic implementation of Functor, but only for instances of Generic1, which applies to much more restricted shapes of data than Generic.

Deriving Bifunctor

Similarly, we can use DerivingVia for the Bifunctor class (from base, module Data.Bifunctor).

{-# LANGUAGE DeriveGeneric, DerivingVia #-}

import GHC.Generics (Generic)
import Generic.Functor (GenericFunctor(..), GenericBifunctor(..))

data Tree a b = Node a (Tree a b) (Tree a b) | Leaf b
  deriving Generic
  deriving Functor via (GenericFunctor (Tree a))
  deriving Bifunctor via (GenericBifunctor Tree)

In summary, the newtype GenericFunctor can be used for DerivingVia of the classes Functor and Foldable, and the newtype GenericBifunctor for the classes Bifunctor and Bifoldable.

Default implementations for the above classes are also available as standalone functions (gfmap, gfoldMap, gbimap, gbifoldMap) and also for Traversable and Bitraversable (gtraverse, gbitraverse).

Internal module policy

The public API is Generic.Functor. Don’t use Generic.Functor.Internal.

Future work

  • Functors in arbitrary categories.

Related links


  • Add gfoldMap, gtraverse, gbifoldMap, gbitraverse GFoldable, GFoldMap, GTraversable, GTraverse, GBiFoldable, GBifoldMap, GBitraversable, GBitraverse
  • Rename GBifunctor to GBimap, and add new GBifunctor (class synonym for GBimap, GFirst, and GSecond)
  • Rename DeriveFunctor to GenericFunctor, and rename DeriveBifunctor to GenericBifunctor
  • Add instances for deriving-via Foldable and Bifoldable

  • Add gmultimap, multimap, (:+)
  • Add DeriveBifunctor, gbimap, gfirst, gsecond

  • Include README

  • Create generic-functor