generic-lens

Generic data-structure operations exposed as lenses.

https://github.com/kcsongor/generic-lens

Version on this page:0.5.1.0
LTS Haskell 22.38:2.2.2.0@rev:1
Stackage Nightly 2024-10-11:2.2.2.0@rev:1
Latest on Hackage:2.2.2.0@rev:1

See all snapshots generic-lens appears in

BSD-3-Clause licensed by Csongor Kiss
Maintained by [email protected]
This version can be pinned in stack with:generic-lens-0.5.1.0@sha256:6923a60d4e25999c004be1d0ebdf09a621c946cd0837bacc11a111cdd8f6718e,4244
Used by 1 package in lts-11.22(full list with versions):

generic-lens

Build Status Hackage

Generically derive lenses and prisms for data types.

Available on Hackage

This package uses the GHC 8 Generic representation to derive various operations on data structures with lens interfaces, including structural subtype relationships between records and positional indexing into arbitrary product types.

This is made possible by GHC 8’s new Generics API, which provides metadata at the type-level (previously only value-level metadata was available).

Examples can be found in the examples folder. This library makes heavy use of Visible Type Applications.

Lenses

Record fields

Record fields can be accessed by their label:

data Person = Person { name :: String, age :: Int } deriving (Generic, Show)

sally :: Person
sally = Person "Sally" 25
>>> getField @"age" sally
25

>>> setField @"age" 26 sally
Person {name = "Sally", age = 26}

>>> sally ^. field @"name"
"Sally"

>>> sally & field @"name" .~ "Tamas"
Person {name = "Tamas", age = 25}

>>> sally ^. field @"pet"
error:
  • The type Person does not contain a field named "pet"

If the accessed field is a type parameter that appears uniquely in the type, then its type can be changed:

data T a b c d = T
  { paramA :: a
  , paramB :: b
  , paramC :: c
  , paramD :: d
  }
  deriving (Generic, Show)

>>> t = T "a" (10 :: Int) 'c' False
>>> t & field @"paramA" .~ 'a' & field @"paramB" .~ False
T {paramA = 'a', paramB = False, paramC = 'c', paramD = False}

Positional fields

Fields can be accessed by their position in the data structure (index starting at 1):

data Point = Point Int Int Int deriving (Generic, Show)
data Polygon = Polygon Point Point Point deriving (Generic, Show)

polygon :: Polygon
polygon = Polygon (Point 1 5 3) (Point 2 4 2) (Point 5 7 (-2))
>>> getPosition @2 polygon
Point 2 4 2

>>> setPosition @1 (Point 26 5 3) polygon
Polygon (Point 26 5 3) (Point 2 4 2) (Point 5 7 (-2))

>>> polygon ^. position @1 . position @2
5

>>> polygon & position @3 . position @2 %~ (+10)
Polygon (Point 1 5 3) (Point 2 4 2) (Point 5 17 (-2))

>>> polygon ^. position @10
error:
  • The type Polygon does not contain a field at position 10

Since tuples are an instance of Generic, they also have positional lenses:

>>> (("hello", True), 5) ^. position @1 . position @2
True

Typed fields

Fields can be accessed by their type in the data structure, assuming that this type is unique:

data Person = Person { name :: String, age :: Int } deriving (Generic, Show)
data Point = Point Int Int Int deriving (Generic, Show)

sally :: Person
sally = Person "Sally" 25

point :: Point
point = Point 1 2 3
>>> getTyped @String sally
"Sally"

>>> setTyped @Int sally 26
Person {name = "Sally", age = 26}

>>> point ^. typed @Int
error:
  • The type Point contains multiple values of type Int; the choice of value is thus ambiguous

>>> point & typed @String .~ "Point"
error:
  • The type Point does not contain a value of type [Char]

Structural subtyping

A record is a (structural) `subtype’ of another, if its fields are a superset of those of the other.

data Human = Human
  { name    :: String
  , age     :: Int
  , address :: String
  } deriving (Generic, Show)

data Animal = Animal
  { name    :: String
  , age     :: Int
  } deriving (Generic, Show)

human :: Human
human = Human {name = "Tunyasz", age = 50, address = "London"}

>>> upcast human :: Animal
Animal {name = "Tunyasz", age = 50}

-- 'smash' plug the smaller structure into the larger one
>>> smash (Animal "dog" 10) human
Human {name = "dog", age = 10, address = "London"}

-- 'super' is a lens that focuses on a subrecord of a larger record:
>>> human ^. super @Animal
Animal {name = "Tunyasz", age = 50}

We can apply a function that operates on a supertype to the larger (subtype) structure, by focusing on the supertype first:

growUp :: Animal -> Animal
growUp (Animal name age) = Animal name (age + 50)

>>> human & super @Animal %~ growUp
Human {name = "Tunyasz", age = 60, address = "London"}

Prisms

Named constructors

Constructor components can be accessed using the constructor’s name:

type Name = String
type Age  = Int

data Dog = MkDog { name :: Name, age :: Age } deriving (Generic, Show)
data Animal = Dog Dog | Cat Name Age | Duck Age deriving (Generic, Show)

shep = Dog (MkDog "Shep" 4)
mog = Cat "Mog" 5
donald = Duck 4
>>> shep ^? _Ctor @"Dog"
Just (MkDog {name = "Shep", age = 4})

>>> shep ^? _Ctor @"Cat"
Nothing

>>> mog ^? _Ctor @"Cat"
Just ("Mog",5)

>>> _Ctor @"Cat" # ("Garfield", 6) :: Animal
Cat "Garfield" 6

>>> donald ^? _Ctor @"Giraffe"
error:
  • The type Animal does not contain a constructor named "Giraffe"

Typed constructors

Constructor components can be accessed using the component’s type, assuming that this type is unique:

type Name = String
type Age  = Int

data Dog = MkDog { name :: Name, age :: Age } deriving (Generic, Show)
data Animal = Dog Dog | Cat (Name, Age) | Duck Age deriving (Generic, Show)

shep = Dog (MkDog "Shep" 4)
mog = Cat ("Mog", 5)
donald = Duck 4
>>> mog ^? _Typed @Dog
Nothing

>>> shep ^? _Typed @Dog
Just (MkDog {name = "Shep", age = 4})

>>> donald ^? _Typed @Age
Just 4

>>> donald ^? _Typed @Float
error:
  • The type Animal does not contain a constructor whose field is of type Float

>>> _Typed @Age # 6 :: Animal
Duck 6

Contributors

Changes

0.5.1.0

  • Infer input type from result type (#25)
  • Allow changing of multiple type parameters (#24)
  • Allow changing of type parameters that have kinds other than * (#23)
  • Fix error message in subtype lens

0.5.0.0

  • Lenses and prisms are now type-changing.
  • More informative error messages
  • More readable type signatures in type errors and when using :t
  • Use doctest
  • Include examples in Haddock

Breaking API changes

  • The type parameters of the classes have been changed to accommodate the type-changing update:

    class HasField name a s -> class HasField name s t a b etc.

    Accordingly, field :: Lens' s a -> field :: Lens s t a b