Hoogle Search

Within LTS Haskell 24.2 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    Cabal-syntax Distribution.Compat.Prelude

    No documentation available.

  2. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    relude Relude.Monad.Reexport

    Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression

    do a <- as
    bs a
    
    An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to
    \x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
    
    which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

  3. data ((c :: Exp a) >>= (d :: a -> Exp b)) (e :: b)

    first-class-families Fcf.Combinators

    No documentation available.

  4. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    base-compat-batteries Control.Monad.Compat

    Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression

    do a <- as
    bs a
    
    An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to
    \x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
    
    which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

  5. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    basement Basement.Compat.Base

    Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression

    do a <- as
    bs a
    
    An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to
    \x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
    
    which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

  6. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    basement Basement.Imports

    Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression

    do a <- as
    bs a
    
    An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to
    \x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
    
    which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

  7. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    protolude Protolude.Monad

    Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression

    do a <- as
    bs a
    
    An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to
    \x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
    
    which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

  8. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    ghc-internal GHC.Internal.Base

    Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression

    do a <- as
    bs a
    
    An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to
    \x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
    
    which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

  9. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    ghc-internal GHC.Internal.Control.Monad

    Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression

    do a <- as
    bs a
    
    An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to
    \x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
    
    which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

  10. (>>=) :: Monad m => m a -> (a -> m b) -> m b

    numeric-prelude NumericPrelude

    Sequentially compose two actions, passing any value produced by the first as an argument to the second. 'as >>= bs' can be understood as the do expression

    do a <- as
    bs a
    
    An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to
    \x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b
    
    which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

Page 2 of many | Previous | Next