Hoogle Search

Within LTS Haskell 24.10 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. elimDual :: forall a (p :: Dual a ~> Type) (s :: Dual a) . Sing s -> (forall (f0 :: a) . () => Sing f0 -> Apply p ('Dual f0)) -> Apply p s

    eliminators Data.Eliminator

    No documentation available.

  2. elimDual :: forall a (p :: Dual a ~> Type) (s :: Dual a) . Sing s -> (forall (f0 :: a) . () => Sing f0 -> Apply p ('Dual f0)) -> Apply p s

    eliminators Data.Eliminator.Monoid

    No documentation available.

  3. elimDual :: forall a (p :: Dual a ~> Type) (s :: Dual a) . Sing s -> (forall (f0 :: a) . () => Sing f0 -> Apply p ('Dual f0)) -> Apply p s

    eliminators Data.Eliminator.Semigroup

    No documentation available.

  4. SRResidual :: !Vector v n a -> SiftResult (v :: Type -> Type) (n :: Nat) a

    emd Numeric.EMD

    No documentation available.

  5. emdResidual :: EMD (v :: Type -> Type) (n :: Nat) a -> !Vector v n a

    emd Numeric.EMD

    No documentation available.

  6. SRResidual :: !Vector v n a -> SiftResult (v :: Type -> Type) (n :: Nat) a

    emd Numeric.EMD.Sift

    No documentation available.

  7. hhtResidual :: HHT (v :: Type -> Type) (n :: Natural) a -> Vector v (n + 1) a

    emd Numeric.HHT

    Residual from EMD

  8. discussion_individual_note :: Discussion -> Bool

    gitlab-haskell GitLab.Types

    No documentation available.

  9. data RDualBool

    rec-def Data.Recursive.DualBool

    Like Bool, but admits recursive definitions, preferring the greatest solution.

  10. newtype RDualBool

    rec-def Data.Recursive.Internal

    Like Bool, but admits recursive definitions, preferring the greatest solution.

Page 23 of many | Previous | Next