Hoogle Search

Within LTS Haskell 24.18 (ghc-9.10.3)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. id :: forall (a :: k) . Category cat => cat a a

    ghc-internal GHC.Internal.Control.Category

    the identity morphism

  2. id :: a -> a

    ghc-internal GHC.Internal.Data.Function

    Identity function.

    id x = x
    
    This function might seem useless at first glance, but it can be very useful in a higher order context.

    Examples

    >>> length $ filter id [True, True, False, True]
    3
    
    >>> Just (Just 3) >>= id
    Just 3
    
    >>> foldr id 0 [(^3), (*5), (+2)]
    1000
    

  3. id :: a -> a

    numeric-prelude NumericPrelude

    Identity function.

    id x = x
    
    This function might seem useless at first glance, but it can be very useful in a higher order context.

    Examples

    >>> length $ filter id [True, True, False, True]
    3
    
    >>> Just (Just 3) >>= id
    Just 3
    
    >>> foldr id 0 [(^3), (*5), (+2)]
    1000
    

  4. id :: a -> a

    numeric-prelude NumericPrelude.Base

    Identity function.

    id x = x
    
    This function might seem useless at first glance, but it can be very useful in a higher order context.

    Examples

    >>> length $ filter id [True, True, False, True]
    3
    
    >>> Just (Just 3) >>= id
    Just 3
    
    >>> foldr id 0 [(^3), (*5), (+2)]
    1000
    

  5. id :: forall (a :: k) . Category cat => cat a a

    basic-prelude CorePrelude

    the identity morphism

  6. id :: forall (a :: k) . Category cat => cat a a

    classy-prelude ClassyPrelude

    the identity morphism

  7. id :: a -> a

    ghc-lib-parser GHC.Prelude.Basic

    Identity function.

    id x = x
    
    This function might seem useless at first glance, but it can be very useful in a higher order context.

    Examples

    >>> length $ filter id [True, True, False, True]
    3
    
    >>> Just (Just 3) >>= id
    Just 3
    
    >>> foldr id 0 [(^3), (*5), (+2)]
    1000
    

  8. id :: forall (a :: k) . Category cat => cat a a

    foundation Foundation

    the identity morphism

  9. id :: a -> a

    prelude-compat Prelude2010

    Identity function.

    id x = x
    
    This function might seem useless at first glance, but it can be very useful in a higher order context.

    Examples

    >>> length $ filter id [True, True, False, True]
    3
    
    >>> Just (Just 3) >>= id
    Just 3
    
    >>> foldr id 0 [(^3), (*5), (+2)]
    1000
    

  10. id :: T a a

    synthesizer-core Synthesizer.Causal.Process

    No documentation available.

Page 12 of many | Previous | Next