Hoogle Search

Within LTS Haskell 24.18 (ghc-9.10.3)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. (%<*) :: forall a b (t1 :: f a) (t2 :: f b) . SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  2. (%<*>) :: forall a b (t1 :: f (a ~> b)) (t2 :: f a) . SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  3. (%<=) :: forall (t1 :: a) (t2 :: a) . SOrd a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  4. (%<>) :: forall (t1 :: a) (t2 :: a) . SSemigroup a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<>@#@$) :: TyFun a (a ~> a) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  5. (%=<<) :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: m a) . SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  6. (%==) :: forall (t1 :: a) (t2 :: a) . SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  7. (%>) :: forall (t1 :: a) (t2 :: a) . SOrd a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  8. (%>=) :: forall (t1 :: a) (t2 :: a) . SOrd a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  9. (%>>) :: forall a b (t1 :: m a) (t2 :: m b) . SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  10. (%>>=) :: forall a b (t1 :: m a) (t2 :: a ~> m b) . SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

Page 15 of many | Previous | Next