Hoogle Search

Within LTS Haskell 24.18 (ghc-9.10.3)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. module Typst.Evaluate

    No documentation available.

  2. module Scientist.Result.Evaluate

    No documentation available.

  3. evaluateResult :: Result -> IO ()

    doctest Test.DocTest.Internal.Run

    No documentation available.

  4. evaluateDeep :: (MonadIO m, NFData a) => a -> m a

    unliftio UnliftIO.Exception

    Deeply evaluate a value using evaluate and NFData.

  5. evaluateResult :: SpecResult -> IO ()

    hspec-core Test.Hspec.Core.Runner

    No documentation available.

  6. evaluateSummary :: Summary -> IO ()

    hspec-core Test.Hspec.Core.Runner

    Exit with exitFailure if the given Summary indicates that there was at least one failure.

  7. evaluateExample :: Example e => e -> Params -> (ActionWith (Arg e) -> IO ()) -> ProgressCallback -> IO Result

    hspec-core Test.Hspec.Core.Spec

    Evaluates an example. evaluateExample is expected to execute the test body inside the IO action passed to the hook. It's often necessary to use an IORef to pass data out like whether the test succeeded to the outer IO action so it can be returned as a Result. Example:

    newtype MyAction = MyAction (Int -> IO Bool)
    
    instance Example MyAction where
    type Arg MyAction = Int
    
    evaluateExample (MyAction act) _params hook _progress = do
    result <- newIORef (Result "" Success)
    hook $ arg -> do
    -- e.g. determines if arg is 42
    ok <- act arg
    let result' = Result "" $ if ok then Success else Failure Nothing NoReason
    writeIORef result result'
    readIORef result
    

  8. evaluateBernstein :: Fractional n => BernsteinPoly n -> n -> n

    diagrams-lib Diagrams.TwoD.Segment.Bernstein

    Evaluate the bernstein polynomial.

  9. evaluateBernsteinDerivs :: Fractional n => BernsteinPoly n -> n -> [n]

    diagrams-lib Diagrams.TwoD.Segment.Bernstein

    Evaluate the bernstein polynomial and its derivatives.

  10. evaluateEvenPolynomial :: (Vector v a, Num a) => a -> v a -> a

    math-functions Numeric.Polynomial

    Evaluate polynomial with only even powers using Horner's method. Coefficients starts from lowest. In pseudocode:

    evaluateOddPolynomial x [1,2,3] = 1 + 2*x^2 + 3*x^4
    

Page 5 of many | Previous | Next