Hoogle Search

Within LTS Haskell 24.19 (ghc-9.10.3)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. sMapMaybe :: forall a b (t1 :: a ~> Maybe b) (t2 :: [a]) . Sing t1 -> Sing t2 -> Sing (Apply (Apply (MapMaybeSym0 :: TyFun (a ~> Maybe b) ([a] ~> [b]) -> Type) t1) t2)

    singletons-base Data.Maybe.Singletons

    No documentation available.

  2. sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: t a) . (STraversable t, SMonad m) => Sing t1 -> Sing t2 -> Sing (Apply (Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) t1) t2)

    singletons-base Data.Singletons.Base.TH

    No documentation available.

  3. sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: t a) . (STraversable t, SMonad m) => Sing t1 -> Sing t2 -> Sing (Apply (Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) t1) t2)

    singletons-base Data.Traversable.Singletons

    No documentation available.

  4. sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: t a) . (STraversable t, SMonad m) => Sing t1 -> Sing t2 -> Sing (Apply (Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  5. sMapM_ :: forall a (m :: Type -> Type) b (t1 :: Type -> Type) (t2 :: a ~> m b) (t3 :: t1 a) . (SFoldable t1, SMonad m) => Sing t2 -> Sing t3 -> Sing (Apply (Apply (MapM_Sym0 :: TyFun (a ~> m b) (t1 a ~> m ()) -> Type) t2) t3)

    singletons-base Prelude.Singletons

    No documentation available.

  6. gmapM :: (Uniplate a, Applicative m) => (a -> m a) -> a -> m a

    uniplate Data.Generics.SYB

    gmapM == descendM
    

  7. strMapM :: Applicative m => (a -> m b) -> Str a -> m (Str b)

    uniplate Data.Generics.Str

    No documentation available.

  8. imapM :: forall m (v :: Type -> Type) a b (n :: Nat) . (Monad m, Vector v a, Vector v b) => (Finite n -> a -> m b) -> Vector v n a -> m (Vector v n b)

    vector-sized Data.Vector.Generic.Sized

    O(n) Apply the monadic action to every element of a vector and its index, yielding a vector of results.

  9. imapM_ :: forall m (v :: Type -> Type) a (n :: Nat) b . (Monad m, Vector v a) => (Finite n -> a -> m b) -> Vector v n a -> m ()

    vector-sized Data.Vector.Generic.Sized

    O(n) Apply the monadic action to every element of a vector and its index, ignoring the results.

  10. imapM :: forall m a b (n :: Nat) . (Monad m, Prim a, Prim b) => (Finite n -> a -> m b) -> Vector n a -> m (Vector n b)

    vector-sized Data.Vector.Primitive.Sized

    O(n) Apply the monadic action to every element of a vector and its index, yielding a vector of results.

Page 76 of many | Previous | Next