Hoogle Search

Within LTS Haskell 24.3 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. map :: (a <-> b) -> [a] <-> [b]

    invertible Data.Invertible.Prelude

    Apply a bijection over a list using map.

  2. map :: forall t (m :: Type -> Type) a b . (IsStream t, Monad m) => (a -> b) -> t m a -> t m b

    streamly Streamly.Prelude

    map = fmap
    
    Same as fmap.
    > D.toList $ D.map (+1) $ D.fromList [1,2,3]
    [2,3,4]
    

  3. map :: (a -> b) -> [a] -> [b]

    constrained-categories Control.Category.Constrained.Prelude

    map f xs is the list obtained by applying f to each element of xs, i.e.,

    map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
    map f [x1, x2, ...] == [f x1, f x2, ...]
    
    this means that map id == id

    Examples

    >>> map (+1) [1, 2, 3]
    [2,3,4]
    
    >>> map id [1, 2, 3]
    [1,2,3]
    
    >>> map (\n -> 3 * n + 1) [1, 2, 3]
    [4,7,10]
    

  4. map :: (a -> b) -> [a] -> [b]

    copilot-language Copilot.Language.Prelude

    map f xs is the list obtained by applying f to each element of xs, i.e.,

    map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
    map f [x1, x2, ...] == [f x1, f x2, ...]
    
    this means that map id == id

    Examples

    >>> map (+1) [1, 2, 3]
    [2,3,4]
    
    >>> map id [1, 2, 3]
    [1,2,3]
    
    >>> map (\n -> 3 * n + 1) [1, 2, 3]
    [4,7,10]
    

  5. map :: (a -> b) -> [a] -> [b]

    xmonad-contrib XMonad.Prelude

    map f xs is the list obtained by applying f to each element of xs, i.e.,

    map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
    map f [x1, x2, ...] == [f x1, f x2, ...]
    
    this means that map id == id

    Examples

    >>> map (+1) [1, 2, 3]
    [2,3,4]
    
    >>> map id [1, 2, 3]
    [1,2,3]
    
    >>> map (\n -> 3 * n + 1) [1, 2, 3]
    [4,7,10]
    

  6. data Map k a

    rio RIO.Prelude.Types

    A Map from keys k to values a. The Semigroup operation for Map is union, which prefers values from the left operand. If m1 maps a key k to a value a1, and m2 maps the same key to a different value a2, then their union m1 <> m2 maps k to a1.

  7. data Map k a

    Cabal-syntax Distribution.Compat.Prelude

    A Map from keys k to values a. The Semigroup operation for Map is union, which prefers values from the left operand. If m1 maps a key k to a value a1, and m2 maps the same key to a different value a2, then their union m1 <> m2 maps k to a1.

  8. type family Map (a1 :: a ~> b) (a2 :: [a]) :: [b]

    singletons-base Prelude.Singletons

    No documentation available.

  9. data Map k a

    rebase Rebase.Prelude

    A Map from keys k to values a. The Semigroup operation for Map is union, which prefers values from the left operand. If m1 maps a key k to a value a1, and m2 maps the same key to a different value a2, then their union m1 <> m2 maps k to a1.

  10. data Map k a

    cabal-install-solver Distribution.Solver.Compat.Prelude

    A Map from keys k to values a. The Semigroup operation for Map is union, which prefers values from the left operand. If m1 maps a key k to a value a1, and m2 maps the same key to a different value a2, then their union m1 <> m2 maps k to a1.

Page 3 of many | Previous | Next