Hoogle Search

Within LTS Haskell 24.3 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. nullableMonoid :: Monoid a => Value a -> Value a

    aeson-value-parser AesonValueParser

    No documentation available.

  2. class PartialSemigroup a => PartialMonoid a

    algebra Numeric.Partial.Monoid

    No documentation available.

  3. data WrappedMonoid m

    classy-prelude-yesod ClassyPrelude.Yesod

    Provide a Semigroup for an arbitrary Monoid. NOTE: This is not needed anymore since Semigroup became a superclass of Monoid in base-4.11 and this newtype be deprecated at some point in the future.

  4. class (Monoid r, IsRecord r c) => IsMonoidalRecord r c

    columnar Text.Columnar

    IsRecord combines the column type with the record type, each record type determining the column type and vice versa

  5. convertMonoidalFieldMethodsToFieldMethods :: MonoidalFieldMethods r c -> FieldMethods r c

    columnar Text.Columnar

    No documentation available.

  6. mkMonoidalFieldMethods :: (TextParsable f, Buildable f, Monoid f) => Lens' r f -> MonoidalFieldMethods r c

    columnar Text.Columnar

    for constructing each field's MonoidalFieldMethods

  7. newtype FreeMonoid a

    folds Data.Fold.Internal

    No documentation available.

  8. FreeMonoid :: (forall m . Monoid m => (a -> m) -> m) -> FreeMonoid a

    folds Data.Fold.Internal

    No documentation available.

  9. runFreeMonoid :: FreeMonoid a -> forall m . Monoid m => (a -> m) -> m

    folds Data.Fold.Internal

    No documentation available.

  10. class QBifunctor prod => QMonoidal (prod :: k -> k1 -> Type -> k -> k1 -> Type -> k -> k1 -> Type) (unit :: k -> k1 -> Type) | prod -> unit

    free-categories Data.Quiver.Bifunctor

    A monoidal category structure on the category of quivers. This consists of a product bifunctor, a unit object and structure morphisms, an invertible associator,

    qassoc . qdisassoc = id
    
    qdisassoc . qassoc = id
    
    and invertible left and right unitors,
    qintro1 . qelim1 = id
    
    qelim1 . qintro1 = id
    
    qintro2 . qelim2 = id
    
    qelim2 . qintro2 = id
    
    that satisfy the pentagon equation,
    qbimap id qassoc . qassoc . qbimap qassoc id = qassoc . qassoc
    
    and the triangle equation,
    qbimap id qelim1 . qassoc = qbimap qelim2 id
    

Page 36 of many | Previous | Next