Hoogle Search
Within LTS Haskell 24.25 (ghc-9.10.3)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
elem :: (Foldable t, Eq a) => a -> t a -> BoolLambdaHack Game.LambdaHack.Core.Prelude Does the element occur in the structure? Note: elem is often used in infix form.
Examples
Basic usage:>>> 3 `elem` [] False
>>> 3 `elem` [1,2] False
>>> 3 `elem` [1,2,3,4,5] True
For infinite structures, the default implementation of elem terminates if the sought-after value exists at a finite distance from the left side of the structure:>>> 3 `elem` [1..] True
>>> 3 `elem` ([4..] ++ [3]) * Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> BoolLambdaHack Game.LambdaHack.Core.Prelude notElem is the negation of elem.
Examples
Basic usage:>>> 3 `notElem` [] True
>>> 3 `notElem` [1,2] True
>>> 3 `notElem` [1,2,3,4,5] False
For infinite structures, notElem terminates if the value exists at a finite distance from the left side of the structure:>>> 3 `notElem` [1..] False
>>> 3 `notElem` ([4..] ++ [3]) * Hangs forever *
elem :: (Foldable t, Eq a) => a -> t a -> BoolLambdaHack Game.LambdaHack.Core.Prelude Does the element occur in the structure? Note: elem is often used in infix form.
Examples
Basic usage:>>> 3 `elem` [] False
>>> 3 `elem` [1,2] False
>>> 3 `elem` [1,2,3,4,5] True
For infinite structures, the default implementation of elem terminates if the sought-after value exists at a finite distance from the left side of the structure:>>> 3 `elem` [1..] True
>>> 3 `elem` ([4..] ++ [3]) * Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> BoolLambdaHack Game.LambdaHack.Core.Prelude notElem is the negation of elem.
Examples
Basic usage:>>> 3 `notElem` [] True
>>> 3 `notElem` [1,2] True
>>> 3 `notElem` [1,2,3,4,5] False
For infinite structures, notElem terminates if the value exists at a finite distance from the left side of the structure:>>> 3 `notElem` [1..] False
>>> 3 `notElem` ([4..] ++ [3]) * Hangs forever *
elem :: (Foldable t, Eq a) => a -> t a -> Boolcabal-install-solver Distribution.Solver.Compat.Prelude Does the element occur in the structure? Note: elem is often used in infix form.
Examples
Basic usage:>>> 3 `elem` [] False
>>> 3 `elem` [1,2] False
>>> 3 `elem` [1,2,3,4,5] True
For infinite structures, the default implementation of elem terminates if the sought-after value exists at a finite distance from the left side of the structure:>>> 3 `elem` [1..] True
>>> 3 `elem` ([4..] ++ [3]) * Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> Boolcabal-install-solver Distribution.Solver.Compat.Prelude notElem is the negation of elem.
Examples
Basic usage:>>> 3 `notElem` [] True
>>> 3 `notElem` [1,2] True
>>> 3 `notElem` [1,2,3,4,5] False
For infinite structures, notElem terminates if the value exists at a finite distance from the left side of the structure:>>> 3 `notElem` [1..] False
>>> 3 `notElem` ([4..] ++ [3]) * Hangs forever *
elem :: (Foldable t, Eq a) => a -> t a -> Boolihaskell IHaskellPrelude Does the element occur in the structure? Note: elem is often used in infix form.
Examples
Basic usage:>>> 3 `elem` [] False
>>> 3 `elem` [1,2] False
>>> 3 `elem` [1,2,3,4,5] True
For infinite structures, the default implementation of elem terminates if the sought-after value exists at a finite distance from the left side of the structure:>>> 3 `elem` [1..] True
>>> 3 `elem` ([4..] ++ [3]) * Hangs forever *
notElem :: (Foldable t, Eq a) => a -> t a -> Boolihaskell IHaskellPrelude notElem is the negation of elem.
Examples
Basic usage:>>> 3 `notElem` [] True
>>> 3 `notElem` [1,2] True
>>> 3 `notElem` [1,2,3,4,5] False
For infinite structures, notElem terminates if the value exists at a finite distance from the left side of the structure:>>> 3 `notElem` [1..] False
>>> 3 `notElem` ([4..] ++ [3]) * Hangs forever *
elem :: (Foldable t, Eq a) => a -> t a -> Boolincipit-base Incipit.Foldable Does the element occur in the structure? Note: elem is often used in infix form.
Examples
Basic usage:>>> 3 `elem` [] False
>>> 3 `elem` [1,2] False
>>> 3 `elem` [1,2,3,4,5] True
For infinite structures, the default implementation of elem terminates if the sought-after value exists at a finite distance from the left side of the structure:>>> 3 `elem` [1..] True
>>> 3 `elem` ([4..] ++ [3]) * Hangs forever *
elem :: (Foldable t, Eq a) => a -> t a -> Boolcalligraphy Calligraphy.Prelude Does the element occur in the structure? Note: elem is often used in infix form.
Examples
Basic usage:>>> 3 `elem` [] False
>>> 3 `elem` [1,2] False
>>> 3 `elem` [1,2,3,4,5] True
For infinite structures, the default implementation of elem terminates if the sought-after value exists at a finite distance from the left side of the structure:>>> 3 `elem` [1..] True
>>> 3 `elem` ([4..] ++ [3]) * Hangs forever *