Hoogle Search
Within LTS Haskell 24.4 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
-
ghc-internal GHC.Internal.Base (++) appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.Performance considerations
This function takes linear time in the number of elements of the first list. Thus it is better to associate repeated applications of (++) to the right (which is the default behaviour): xs ++ (ys ++ zs) or simply xs ++ ys ++ zs, but not (xs ++ ys) ++ zs. For the same reason concat = foldr (++) [] has linear performance, while foldl (++) [] is prone to quadratic slowdownExamples
>>> [1, 2, 3] ++ [4, 5, 6] [1,2,3,4,5,6]
>>> [] ++ [1, 2, 3] [1,2,3]
>>> [3, 2, 1] ++ [] [3,2,1]
-
ghc-internal GHC.Internal.Data.List (++) appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.Performance considerations
This function takes linear time in the number of elements of the first list. Thus it is better to associate repeated applications of (++) to the right (which is the default behaviour): xs ++ (ys ++ zs) or simply xs ++ ys ++ zs, but not (xs ++ ys) ++ zs. For the same reason concat = foldr (++) [] has linear performance, while foldl (++) [] is prone to quadratic slowdownExamples
>>> [1, 2, 3] ++ [4, 5, 6] [1,2,3,4,5,6]
>>> [] ++ [1, 2, 3] [1,2,3]
>>> [3, 2, 1] ++ [] [3,2,1]
-
ghc-internal GHC.Internal.Data.OldList (++) appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.Performance considerations
This function takes linear time in the number of elements of the first list. Thus it is better to associate repeated applications of (++) to the right (which is the default behaviour): xs ++ (ys ++ zs) or simply xs ++ ys ++ zs, but not (xs ++ ys) ++ zs. For the same reason concat = foldr (++) [] has linear performance, while foldl (++) [] is prone to quadratic slowdownExamples
>>> [1, 2, 3] ++ [4, 5, 6] [1,2,3,4,5,6]
>>> [] ++ [1, 2, 3] [1,2,3]
>>> [3, 2, 1] ++ [] [3,2,1]
-
ghc-internal GHC.Internal.List (++) appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.Performance considerations
This function takes linear time in the number of elements of the first list. Thus it is better to associate repeated applications of (++) to the right (which is the default behaviour): xs ++ (ys ++ zs) or simply xs ++ ys ++ zs, but not (xs ++ ys) ++ zs. For the same reason concat = foldr (++) [] has linear performance, while foldl (++) [] is prone to quadratic slowdownExamples
>>> [1, 2, 3] ++ [4, 5, 6] [1,2,3,4,5,6]
>>> [] ++ [1, 2, 3] [1,2,3]
>>> [3, 2, 1] ++ [] [3,2,1]
-
numeric-prelude NumericPrelude (++) appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.Performance considerations
This function takes linear time in the number of elements of the first list. Thus it is better to associate repeated applications of (++) to the right (which is the default behaviour): xs ++ (ys ++ zs) or simply xs ++ ys ++ zs, but not (xs ++ ys) ++ zs. For the same reason concat = foldr (++) [] has linear performance, while foldl (++) [] is prone to quadratic slowdownExamples
>>> [1, 2, 3] ++ [4, 5, 6] [1,2,3,4,5,6]
>>> [] ++ [1, 2, 3] [1,2,3]
>>> [3, 2, 1] ++ [] [3,2,1]
-
numeric-prelude NumericPrelude.Base (++) appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.Performance considerations
This function takes linear time in the number of elements of the first list. Thus it is better to associate repeated applications of (++) to the right (which is the default behaviour): xs ++ (ys ++ zs) or simply xs ++ ys ++ zs, but not (xs ++ ys) ++ zs. For the same reason concat = foldr (++) [] has linear performance, while foldl (++) [] is prone to quadratic slowdownExamples
>>> [1, 2, 3] ++ [4, 5, 6] [1,2,3,4,5,6]
>>> [] ++ [1, 2, 3] [1,2,3]
>>> [3, 2, 1] ++ [] [3,2,1]
-
numhask NumHask.Prelude (++) appends two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.Performance considerations
This function takes linear time in the number of elements of the first list. Thus it is better to associate repeated applications of (++) to the right (which is the default behaviour): xs ++ (ys ++ zs) or simply xs ++ ys ++ zs, but not (xs ++ ys) ++ zs. For the same reason concat = foldr (++) [] has linear performance, while foldl (++) [] is prone to quadratic slowdownExamples
>>> [1, 2, 3] ++ [4, 5, 6] [1,2,3,4,5,6]
>>> [] ++ [1, 2, 3] [1,2,3]
>>> [3, 2, 1] ++ [] [3,2,1]
(
++ ) :: Monoid w => w -> w -> wbasic-prelude BasicPrelude (++) = mappend
(
++ ) :: Monoid m => m -> m -> mclassy-prelude ClassyPrelude No documentation available.
(
++ ) :: Foldable f => f a -> Infinite a -> Infinite aghc-lib-parser GHC.Data.List.Infinite No documentation available.