Hoogle Search

Within LTS Haskell 24.3 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. serveTCPforever :: InetServerOptions -> HandlerT -> IO ()

    MissingH Network.SocketServer

    Convenience function to completely set up a TCP SocketServer and handle all incoming requests. This function is literally this:

    serveTCPforever options func =
    do sockserv <- setupSocketServer options
    serveForever sockserv func
    

  2. parseForever :: forall (m :: Type -> Type) a r b . Monad m => (forall (n :: Type -> Type) . Monad n => Parser a n (Either r b)) -> Pipe a b m r

    pipes-parse Pipes.Parse

    Deprecated: Use parsed instead

  3. parseForever_ :: forall (m :: Type -> Type) a b . Monad m => (forall (n :: Type -> Type) . Monad n => Parser a n (Maybe b)) -> Pipe a b m ()

    pipes-parse Pipes.Parse

    Deprecated: Use parsed_ instead

  4. printSinesForever :: LiveProgram IO

    essence-of-live-coding LiveCoding.Forever

    No documentation available.

  5. sinesForever :: forall (m :: Type -> Type) . MonadFix m => Cell m () String

    essence-of-live-coding LiveCoding.Forever

    No documentation available.

  6. sinesForever' :: forall (m :: Type -> Type) . MonadFix m => CellExcept () String m Void

    essence-of-live-coding LiveCoding.Forever

    No documentation available.

  7. delayForever :: a

    checkers Test.QuickCheck.Later

    A value that is never available. Rerun of hang from unamb, but replicated to avoid mutual dependency. TODO: Remove when this module is moved into the unamb-test package.

  8. awaitForever :: forall input output (monad :: Type -> Type) b . (input -> Conduit input output monad b) -> Conduit input output monad ()

    foundation Foundation.Conduit

    No documentation available.

  9. divForever :: Integral a => Splitter a

    binary-search Numeric.Search

    Perform split forever, until we cannot find a mid-value because hi-lo < 2. This splitter assumes that the arguments are Integral, and uses the div funtion. Note that our dividing algorithm always find the mid value for any hi-lo >= 2.

    >>> prove $ \x y -> (y .>= x+2 &&& x+2 .> x) ==> let z = (x+1) `sDiv` 2 + y `sDiv` 2  in x .< z &&& z .< (y::SInt32)
    Q.E.D.
    

  10. divideForever :: (Eq a, Fractional a) => Splitter a

    binary-search Numeric.Search

    Perform split forever, until we cannot find a mid-value due to machine precision. This one uses (/) operator.

Page 6 of many | Previous | Next