Hoogle Search

Within LTS Haskell 24.31 (ghc-9.10.3)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. Eq :: forall (inTp :: BaseType) . Binop inTp 'BaseBoolType

    what4 What4.Protocol.VerilogWriter.AST

    No documentation available.

  2. Eq :: Operator

    cabal-gild CabalGild.Unstable.Type.VersionRange

    No documentation available.

  3. module Clash.Util.Eq

    Utilities related to the Eq type class.

  4. Eq :: forall a . Eq a => Type a -> Op2 a a Bool

    copilot-core Copilot.Core.Operators

    No documentation available.

  5. EQ :: Ordering

    dimensional Numeric.Units.Dimensional.Prelude

    No documentation available.

  6. class Eq a

    dimensional Numeric.Units.Dimensional.Prelude

    The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq. The Haskell Report defines no laws for Eq. However, instances are encouraged to follow these properties:

    • Reflexivity x == x = True
    • Symmetry x == y = y == x
    • Transitivity if x == y && y == z = True, then x == z = True
    • Extensionality if x == y = True and f is a function whose return type is an instance of Eq, then f x == f y = True
    • Negation x /= y = not (x == y)

  7. EQ :: Ordering

    distribution-opensuse OpenSuse.Prelude

    No documentation available.

  8. class Eq a

    distribution-opensuse OpenSuse.Prelude

    The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq. The Haskell Report defines no laws for Eq. However, instances are encouraged to follow these properties:

    • Reflexivity x == x = True
    • Symmetry x == y = y == x
    • Transitivity if x == y && y == z = True, then x == z = True
    • Extensionality if x == y = True and f is a function whose return type is an instance of Eq, then f x == f y = True
    • Negation x /= y = not (x == y)

  9. EQ :: Opcode' j

    evm-opcodes EVM.Opcode

    0x14

  10. EQ :: Opcode' j

    evm-opcodes EVM.Opcode.Internal

    0x14

Page 10 of many | Previous | Next