Hoogle Search

Within LTS Haskell 24.4 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. (%/=) :: forall (t1 :: a) (t2 :: a) . SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2)

    singletons-base Data.Eq.Singletons

    No documentation available.

  2. (%==) :: forall (t1 :: a) (t2 :: a) . SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2)

    singletons-base Data.Eq.Singletons

    No documentation available.

  3. (%$) :: forall a b (t1 :: a ~> b) (t2 :: a) . Sing t1 -> Sing t2 -> Sing (Apply (Apply (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) t1) t2)

    singletons-base Data.Function.Singletons

    No documentation available.

  4. (%&) :: forall a b (t1 :: a) (t2 :: a ~> b) . Sing t1 -> Sing t2 -> Sing (Apply (Apply ((&@#@$) :: TyFun a ((a ~> b) ~> b) -> Type) t1) t2)

    singletons-base Data.Function.Singletons

    No documentation available.

  5. (%.) :: forall b c a (t1 :: b ~> c) (t2 :: a ~> b) (t3 :: a) . Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) t1) t2) t3)

    singletons-base Data.Function.Singletons

    No documentation available.

  6. (%$>) :: forall (f :: Type -> Type) a b (t1 :: f a) (t2 :: b) . SFunctor f => Sing t1 -> Sing t2 -> Sing (Apply (Apply (($>@#@$) :: TyFun (f a) (b ~> f b) -> Type) t1) t2)

    singletons-base Data.Functor.Singletons

    No documentation available.

  7. (%<$) :: forall a b (t1 :: a) (t2 :: f b) . SFunctor f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) t1) t2)

    singletons-base Data.Functor.Singletons

    No documentation available.

  8. (%<$>) :: forall a b (f :: Type -> Type) (t1 :: a ~> b) (t2 :: f a) . SFunctor f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) t1) t2)

    singletons-base Data.Functor.Singletons

    No documentation available.

  9. (%<&>) :: forall (f :: Type -> Type) a b (t1 :: f a) (t2 :: a ~> b) . SFunctor f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<&>@#@$) :: TyFun (f a) ((a ~> b) ~> f b) -> Type) t1) t2)

    singletons-base Data.Functor.Singletons

    No documentation available.

  10. (%!!) :: forall a (t1 :: NonEmpty a) (t2 :: Natural) . Sing t1 -> Sing t2 -> Sing (Apply (Apply ((!!@#@$) :: TyFun (NonEmpty a) (Natural ~> a) -> Type) t1) t2)

    singletons-base Data.List.NonEmpty.Singletons

    No documentation available.

Page 10 of many | Previous | Next