Hoogle Search

Within LTS Haskell 24.4 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. class Functor f => Monoidal (f :: Type -> Type)

    invertible Control.Invertible.Monoidal

    Invariant monoidal functor. This roughly corresponds to Applicative, which, for covariant functors, is equivalent to a monoidal functor. Invariant functors, however, may admit a monoidal instance but not applicative.

  2. class Monoidal f => MonoidalAlt (f :: Type -> Type)

    invertible Control.Invertible.Monoidal

    Monoidal functors that allow choice.

  3. module Data.Bifunctor.Monoidal

    No documentation available.

  4. class (Tensor cat t1 i1, Tensor cat t2 i2, Tensor cat to io, Semigroupal cat t1 t2 to f, Unital cat i1 i2 io f) => Monoidal (cat :: Type -> Type -> Type) (t1 :: Type -> Type -> Type) i1 (t2 :: Type -> Type -> Type) i2 (to :: Type -> Type -> Type) io (f :: Type -> Type -> Type)

    monoidal-functors Data.Bifunctor.Monoidal

    Given monoidal categories <math> and <math>. A bifunctor <math> is Monoidal if it maps between <math> and <math> while preserving their monoidal structure. Eg., a homomorphism of monoidal categories. See NCatlab for more details.

    Laws

    Right Unitality: <math>
    combine . grmap introducebwd unitr . fwd unitr
    
    Left Unitality: <math>
    combine . glmap introducefmap (bwd unitl) . fwd unitl
    

  5. module Data.Functor.Monoidal

    No documentation available.

  6. class (Tensor cat t1 i1, Tensor cat t0 i0, Semigroupal cat t1 t0 f, Unital cat i1 i0 f) => Monoidal (cat :: Type -> Type -> Type) (t1 :: Type -> Type -> Type) i1 (t0 :: Type -> Type -> Type) i0 (f :: Type -> Type)

    monoidal-functors Data.Functor.Monoidal

    Given monoidal categories <math> and <math>. A functor <math> is Monoidal if it maps between <math> and <math> while preserving their monoidal structure. Eg., a homomorphism of monoidal categories. See NCatlab for more details.

    Laws

    Right Unitality: <math>
    combine . grmap introducebwd unitr . fwd unitr
    
    Left Unitality: <math>
    combine . glmap introducefmap (bwd unitl) . fwd unitl
    

  7. module Data.Trifunctor.Monoidal

    No documentation available.

  8. class (Tensor cat t1 i1, Tensor cat t2 i2, Tensor cat t3 i3, Tensor cat to io, Semigroupal cat t1 t2 t3 to f, Unital cat i1 i2 i3 io f) => Monoidal (cat :: Type -> Type -> Type) (t1 :: Type -> Type -> Type) i1 (t2 :: Type -> Type -> Type) i2 (t3 :: Type -> Type -> Type) i3 (to :: Type -> Type -> Type) io (f :: Type -> Type -> Type -> Type)

    monoidal-functors Data.Trifunctor.Monoidal

    Given monoidal categories <math> and <math>. A bifunctor <math> is Monoidal if it maps between <math> and <math> while preserving their monoidal structure. Eg., a homomorphism of monoidal categories. See NCatlab for more details.

    Laws

    Right Unitality: <math>
    combine . grmap introducebwd unitr . fwd unitr
    
    Left Unitality: <math>
    combine . glmap introducefmap (bwd unitl) . fwd unitl
    

  9. class (LeftModule Natural m, RightModule Natural m) => Monoidal m

    algebra Numeric.Algebra

    An additive monoid

    zero + a = a = a + zero
    

  10. class (LeftModule Natural m, RightModule Natural m) => Monoidal m

    algebra Numeric.Algebra.Class

    An additive monoid

    zero + a = a = a + zero
    

Page 11 of many | Previous | Next