Hoogle Search
Within LTS Haskell 24.4 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
class Functor f =>
Monoidal (f :: Type -> Type)invertible Control.Invertible.Monoidal Invariant monoidal functor. This roughly corresponds to Applicative, which, for covariant functors, is equivalent to a monoidal functor. Invariant functors, however, may admit a monoidal instance but not applicative.
class Monoidal f =>
MonoidalAlt (f :: Type -> Type)invertible Control.Invertible.Monoidal Monoidal functors that allow choice.
module Data.Bifunctor.
Monoidal No documentation available.
-
monoidal-functors Data.Bifunctor.Monoidal Given monoidal categories <math> and <math>. A bifunctor <math> is Monoidal if it maps between <math> and <math> while preserving their monoidal structure. Eg., a homomorphism of monoidal categories. See NCatlab for more details.
Laws
Right Unitality: <math>combine . grmap introduce ≡ bwd unitr . fwd unitr
Left Unitality: <math>combine . glmap introduce ≡ fmap (bwd unitl) . fwd unitl
-
No documentation available.
-
monoidal-functors Data.Functor.Monoidal Given monoidal categories <math> and <math>. A functor <math> is Monoidal if it maps between <math> and <math> while preserving their monoidal structure. Eg., a homomorphism of monoidal categories. See NCatlab for more details.
Laws
Right Unitality: <math>combine . grmap introduce ≡ bwd unitr . fwd unitr
Left Unitality: <math>combine . glmap introduce ≡ fmap (bwd unitl) . fwd unitl
module Data.Trifunctor.
Monoidal No documentation available.
-
monoidal-functors Data.Trifunctor.Monoidal Given monoidal categories <math> and <math>. A bifunctor <math> is Monoidal if it maps between <math> and <math> while preserving their monoidal structure. Eg., a homomorphism of monoidal categories. See NCatlab for more details.
Laws
Right Unitality: <math>combine . grmap introduce ≡ bwd unitr . fwd unitr
Left Unitality: <math>combine . glmap introduce ≡ fmap (bwd unitl) . fwd unitl
class (LeftModule Natural m, RightModule Natural m) =>
Monoidal malgebra Numeric.Algebra An additive monoid
zero + a = a = a + zero
class (LeftModule Natural m, RightModule Natural m) =>
Monoidal malgebra Numeric.Algebra.Class An additive monoid
zero + a = a = a + zero