Hoogle Search
Within LTS Haskell 24.4 (ghc-9.10.2)
Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.
toMonoid :: (Monoid m, Monoid n) => (m :+. n) -> m :+: nmonoid-extras Data.Semigroup.Coproduct Given monoids m and n, we can form their semigroup coproduct m :+. n. Every monoid homomorphism is a semigroup homomorphism. In particular the canonical inections of the monoid coproduct from m and n into m :+: n are semigroup homomorphisms. By pairing them using the universal property of the semigroup coproduct we obtain a canonical semigroup homomorphism toMonoid from m :+. n to m :+: n.
class
GMonoid (f :: Type -> Type)openapi3 Data.OpenApi.Internal.Utils No documentation available.
-
openapi3 Data.OpenApi.Internal.Utils No documentation available.
stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> aghc-internal GHC.Internal.Data.Semigroup.Internal This is a valid definition of stimes for an idempotent Monoid. When x <> x = x, this definition should be preferred, because it works in <math> rather than <math>
stimesMonoid :: (Integral b, Monoid a) => b -> a -> aghc-internal GHC.Internal.Data.Semigroup.Internal This is a valid definition of stimes for a Monoid. Unlike the default definition of stimes, it is defined for 0 and so it should be preferred where possible.
class
GMonoid (f :: Type -> Type)swagger2 Data.Swagger.Internal.Utils No documentation available.
-
swagger2 Data.Swagger.Internal.Utils No documentation available.
getMonoidalHashMap :: MonoidalHashMap k a -> HashMap k amonoidal-containers Data.HashMap.Monoidal No documentation available.
getMonoidalIntMap :: MonoidalIntMap a -> IntMap amonoidal-containers Data.IntMap.Monoidal No documentation available.
getMonoidalIntMap :: MonoidalIntMap a -> IntMap amonoidal-containers Data.IntMap.Monoidal.Strict No documentation available.