Hoogle Search

Within LTS Haskell 24.4 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. (%~) :: ASetter s t a b -> (a -> b) -> s -> t

    diagrams-lib Diagrams.Prelude

    Modifies the target of a Lens or all of the targets of a Setter or Traversal with a user supplied function. This is an infix version of over.

    fmap f ≡ mapped %~ f
    fmapDefault f ≡ traverse %~ f
    
    >>> (a,b,c) & _3 %~ f
    (a,b,f c)
    
    >>> (a,b) & both %~ f
    (f a,f b)
    
    >>> _2 %~ length $ (1,"hello")
    (1,5)
    
    >>> traverse %~ f $ [a,b,c]
    [f a,f b,f c]
    
    >>> traverse %~ even $ [1,2,3]
    [False,True,False]
    
    >>> traverse.traverse %~ length $ [["hello","world"],["!!!"]]
    [[5,5],[3]]
    
    (%~) :: Setter s t a b    -> (a -> b) -> s -> t
    (%~) :: Iso s t a b       -> (a -> b) -> s -> t
    (%~) :: Lens s t a b      -> (a -> b) -> s -> t
    (%~) :: Traversal s t a b -> (a -> b) -> s -> t
    

  2. (%=) :: MonadState s m => ASetter s s a b -> (a -> b) -> m ()

    Cabal-syntax Distribution.Compat.Lens

    No documentation available.

  3. (%~) :: ASetter s t a b -> (a -> b) -> s -> t

    Cabal-syntax Distribution.Compat.Lens

    No documentation available.

  4. (%~) :: forall (a :: k) (b :: k) . SDecide k => Sing a -> Sing b -> Decision (a :~: b)

    singletons Data.Singletons.Decide

    Compute a proof or disproof of equality, given two singletons.

  5. (%~) :: Lens' s a -> (a -> a) -> s -> s

    relude Relude.Extra.Lens

    The operator form of over.

  6. (%*>) :: forall a b (t1 :: f a) (t2 :: f b) . SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) t1) t2)

    singletons-base Control.Applicative.Singletons

    No documentation available.

  7. (%<$) :: forall a b (t1 :: a) (t2 :: f b) . SFunctor f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) t1) t2)

    singletons-base Control.Applicative.Singletons

    No documentation available.

  8. (%<$>) :: forall a b (f :: Type -> Type) (t1 :: a ~> b) (t2 :: f a) . SFunctor f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) t1) t2)

    singletons-base Control.Applicative.Singletons

    No documentation available.

  9. (%<*) :: forall a b (t1 :: f a) (t2 :: f b) . SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) t1) t2)

    singletons-base Control.Applicative.Singletons

    No documentation available.

  10. (%<**>) :: forall (f :: Type -> Type) a b (t1 :: f a) (t2 :: f (a ~> b)) . SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) t1) t2)

    singletons-base Control.Applicative.Singletons

    No documentation available.

Page 8 of many | Previous | Next