Hoogle Search

Within LTS Haskell 24.5 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. (%>) :: forall (t1 :: a) (t2 :: a) . SOrd a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2)

    singletons-base Data.Singletons.Base.TH

    No documentation available.

  2. (%>=) :: forall (t1 :: a) (t2 :: a) . SOrd a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2)

    singletons-base Data.Singletons.Base.TH

    No documentation available.

  3. (%~) :: forall (a :: k) (b :: k) . SDecide k => Sing a -> Sing b -> Decision (a :~: b)

    singletons-base Data.Singletons.Base.TH

    Compute a proof or disproof of equality, given two singletons.

  4. (%<=?) :: forall (a :: Natural) (b :: Natural) . Sing a -> Sing b -> Sing (a <=? b)

    singletons-base GHC.TypeLits.Singletons

    The singleton analogue of <=? Note that, because of historical reasons in GHC's Natural API, <=? is incompatible (unification-wise) with <= and the PEq, SEq, POrd, and SOrd instances for Natural. (a <=? b) ~ 'True does not imply anything about a <= b or any other PEq / POrd relationships. (Be aware that <= in the paragraph above refers to <= from the POrd typeclass, exported from Data.Ord.Singletons, and not the <= from GHC.TypeNats. The latter is simply a type alias for (a <=? b) ~ 'True.) This is provided here for the sake of completeness and for compatibility with libraries with APIs built around <=?. New code should use CmpNat, exposed through this library through the POrd and SOrd instances for Natural.

  5. (%^) :: forall (a :: Natural) (b :: Natural) . Sing a -> Sing b -> Sing (a ^ b)

    singletons-base GHC.TypeLits.Singletons

    The singleton analogue of (^) for Naturals.

  6. (%!!) :: forall a (t1 :: [a]) (t2 :: Natural) . Sing t1 -> Sing t2 -> Sing (Apply (Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  7. (%$) :: forall a b (t1 :: a ~> b) (t2 :: a) . Sing t1 -> Sing t2 -> Sing (Apply (Apply (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  8. (%$!) :: forall a b (t1 :: a ~> b) (t2 :: a) . Sing t1 -> Sing t2 -> Sing (Apply (Apply (($!@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

  9. (%&&) :: forall (a :: Bool) (b :: Bool) . Sing a -> Sing b -> Sing (a && b)

    singletons-base Prelude.Singletons

    Conjunction of singletons

  10. (%*) :: forall (t1 :: a) (t2 :: a) . SNum a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((*@#@$) :: TyFun a (a ~> a) -> Type) t1) t2)

    singletons-base Prelude.Singletons

    No documentation available.

Page 13 of many | Previous | Next