Hoogle Search

Within LTS Haskell 24.6 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. product :: (Vector v a, Num a) => v a -> a

    rebase Rebase.Data.Vector.Generic

    No documentation available.

  2. product :: (Prim a, Num a) => Vector a -> a

    rebase Rebase.Data.Vector.Primitive

    No documentation available.

  3. product :: (Storable a, Num a) => Vector a -> a

    rebase Rebase.Data.Vector.Storable

    No documentation available.

  4. product :: (Unbox a, Num a) => Vector a -> a

    rebase Rebase.Data.Vector.Unboxed

    No documentation available.

  5. product :: (CanMulSameType t, ConvertibleExactly Integer t) => [t] -> t

    mixed-types-num Numeric.MixedTypes.Mul

    No documentation available.

  6. product :: Num a => NonEmptyVector a -> a

    nonempty-vector Data.Vector.NonEmpty

    O(n) Compute the produce of the elements

  7. product :: (Foldable t, Num a) => t a -> a

    LambdaHack Game.LambdaHack.Core.Prelude

    The product function computes the product of the numbers of a structure.

    Examples

    Basic usage:
    >>> product []
    1
    
    >>> product [42]
    42
    
    >>> product [1..10]
    3628800
    
    >>> product [4.1, 2.0, 1.7]
    13.939999999999998
    
    >>> product [1..]
    * Hangs forever *
    

  8. product :: (Foldable t, Num a) => t a -> a

    LambdaHack Game.LambdaHack.Core.Prelude

    The product function computes the product of the numbers of a structure.

    Examples

    Basic usage:
    >>> product []
    1
    
    >>> product [42]
    42
    
    >>> product [1..10]
    3628800
    
    >>> product [4.1, 2.0, 1.7]
    13.939999999999998
    
    >>> product [1..]
    * Hangs forever *
    

  9. product :: (Foldable t, Functor t, Backprop (t a), Fractional a, Reifies s W) => BVar s (t a) -> BVar s a

    backprop Prelude.Backprop

    Lifted product. More efficient than going through toList.

  10. product :: (Foldable t, Functor t, Fractional a, Reifies s W) => AddFunc (t a) -> BVar s (t a) -> BVar s a

    backprop Prelude.Backprop.Explicit

    product, but taking explicit add and zero.

Page 13 of many | Previous | Next