Hoogle Search

Within LTS Haskell 24.6 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. map' :: Expr -> Expr -> Expr

    code-conjure Conjure.Engine

    map lifted over Exprs.

    > map' absE (unit one)
    map abs [1] :: [Int]
    

  2. mapConsts :: (Expr -> Expr) -> Expr -> Expr

    code-conjure Conjure.Engine

    O(n*m). Applies a function to all terminal constants in an expression. Given that:

    > let one   = val (1 :: Int)
    > let two   = val (2 :: Int)
    > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy
    > let intToZero e = if typ e == typ zero then zero else e
    
    Then:
    > one -+- (two -+- xx)
    1 + (2 + x) :: Int
    
    > mapConsts intToZero (one -+- (two -+- xx))
    0 + (0 + x) :: Integer
    
    Given that the argument function is O(m), this function is O(n*m).

  3. mapE :: Expr

    code-conjure Conjure.Engine

    map over the Int element type encoded as an Expr

    > mapE
    map :: (Int -> Int) -> [Int] -> [Int]
    

  4. mapSubexprs :: (Expr -> Maybe Expr) -> Expr -> Expr

    code-conjure Conjure.Engine

    O(n*m). Substitute subexpressions of an expression using the given function. Outer expressions have more precedence than inner expressions. (cf. //) With:

    > let xx = var "x" (undefined :: Int)
    > let yy = var "y" (undefined :: Int)
    > let zz = var "z" (undefined :: Int)
    > let plus = value "+" ((+) :: Int->Int->Int)
    > let times = value "*" ((*) :: Int->Int->Int)
    > let xx -+- yy = plus :$ xx :$ yy
    > let xx -*- yy = times :$ xx :$ yy
    
    > let pluswap (o :$ xx :$ yy) | o == plus = Just $ o :$ yy :$ xx
    |     pluswap _                           = Nothing
    
    Then:
    > mapSubexprs pluswap $ (xx -*- yy) -+- (yy -*- zz)
    y * z + x * y :: Int
    
    > mapSubexprs pluswap $ (xx -+- yy) -*- (yy -+- zz)
    (y + x) * (z + y) :: Int
    
    Substitutions do not stack, in other words a replaced expression or its subexpressions are not further replaced:
    > mapSubexprs pluswap $ (xx -+- yy) -+- (yy -+- zz)
    (y + z) + (x + y) :: Int
    
    Given that the argument function is O(m), this function is O(n*m).

  5. mapValues :: (Expr -> Expr) -> Expr -> Expr

    code-conjure Conjure.Engine

    O(n*m). Applies a function to all terminal values in an expression. (cf. //-) Given that:

    > let zero  = val (0 :: Int)
    > let one   = val (1 :: Int)
    > let two   = val (2 :: Int)
    > let three = val (3 :: Int)
    > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy
    > let intToZero e = if typ e == typ zero then zero else e
    
    Then:
    > one -+- (two -+- three)
    1 + (2 + 3) :: Int
    
    > mapValues intToZero $ one -+- (two -+- three)
    0 + (0 + 0) :: Integer
    
    Given that the argument function is O(m), this function is O(n*m).

  6. mapVars :: (Expr -> Expr) -> Expr -> Expr

    code-conjure Conjure.Engine

    O(n*m). Applies a function to all variables in an expression. Given that:

    > let primeify e = if isVar e
    |                  then case e of (Value n d) -> Value (n ++ "'") d
    |                  else e
    > let xx = var "x" (undefined :: Int)
    > let yy = var "y" (undefined :: Int)
    > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy
    
    Then:
    > xx -+- yy
    x + y :: Int
    
    > primeify xx
    x' :: Int
    
    > mapVars primeify $ xx -+- yy
    x' + y' :: Int
    
    > mapVars (primeify . primeify) $ xx -+- yy
    x'' + y'' :: Int
    
    Given that the argument function is O(m), this function is O(n*m).

  7. map' :: Expr -> Expr -> Expr

    code-conjure Conjure.Expr

    map lifted over Exprs.

    > map' absE (unit one)
    map abs [1] :: [Int]
    

  8. mapConsts :: (Expr -> Expr) -> Expr -> Expr

    code-conjure Conjure.Expr

    O(n*m). Applies a function to all terminal constants in an expression. Given that:

    > let one   = val (1 :: Int)
    > let two   = val (2 :: Int)
    > let xx -+- yy = value "+" ((+) :: Int->Int->Int) :$ xx :$ yy
    > let intToZero e = if typ e == typ zero then zero else e
    
    Then:
    > one -+- (two -+- xx)
    1 + (2 + x) :: Int
    
    > mapConsts intToZero (one -+- (two -+- xx))
    0 + (0 + x) :: Integer
    
    Given that the argument function is O(m), this function is O(n*m).

  9. mapE :: Expr

    code-conjure Conjure.Expr

    map over the Int element type encoded as an Expr

    > mapE
    map :: (Int -> Int) -> [Int] -> [Int]
    

  10. mapInnerFirstOuterLast :: (Expr -> Expr) -> Expr -> Expr

    code-conjure Conjure.Expr

    No documentation available.

Page 281 of many | Previous | Next