Maintained by
Oleg.GrenrusThis version can be pinned in stack with:fin-0.1.1@sha256:8e2b532afe67557a4de61891c5b3b3013b616b67861ff172da622b5b8c770a30,3533
Module documentation for 0.1.1
This package provides two simple types, and some tools to work with them.
Also on type level as DataKinds.
-- Peano naturals
data Nat = Z | S Nat
-- Finite naturals
data Fin (n :: Nat) where
Z :: Fin ('S n)
S :: Fin n -> Fin ('Nat.S n)
vec implements length-indexed
(sized) lists using this package for indexes.
The Data.Fin.Enum module let's work generically with enumerations.
See Hasochism: the pleasure and pain of dependently typed haskell programming
by Sam Lindley and Conor McBride for answers to how and why.
Read APLicative Programming with Naperian Functors
by Jeremy Gibbons for (not so) different ones.
Similar packages
Revision history for fin
0.1.1
- Add
isMin and isMax
- Add
mirror, weakenRight1 and weakenLeft1
- Add
Mult2 and DivMod2
- Explicitly derive
Typeable SNat and Typeable LEProof
- Derive
Typeable for Z and S on GHC-7.8 explicitly
- Add
QuickCheck instances for Nat and Fin
0.1
- Rename
Fin constructors to FZ and FS.
Now you can have both Nat and Fin imported unqualified in a single module.
0.0.3
- Add
Data.Type.Nat.LE, Data.Type.Nat.LT and Data.Type.Nat.LE.ReflStep
modules
- Add
withSNat and discreteNat
0.0.2
- In
Fin add: append and split
- Add
(Enum a, Enum b) => Enum (Either a b) instance
0.0.1
- GHC-8.4.1 / base-4.11 support
0
- First version. Released on an unsuspecting world.