Installation
Before installing the Haskell bindings
you need to install the BLAS and LAPACK packages.
Please note, that additionally to the reference implementation in FORTRAN 77
there are alternative optimized implementations
like OpenBLAS, ATLAS, Intel MKL.
Debian, Ubuntu
sudo apt-get install libblas-dev liblapack-dev
MacOS
You may install pkgconfig and LAPACK via MacPorts:
sudo port install pkgconfig lapack
However, the pkg-config files for LAPACK
seem to be installed in a non-standard location.
You must make them visible to pkg-config by
export PKG_CONFIG_PATH=/opt/local/lib/lapack/pkgconfig:$PKG_CONFIG_PATH
You may set the search PATH permanently by adding
the above command line to your $HOME/.profile
file.
Alternatively, a solution for all users of your machine
would be to set symbolic links:
sudo ln -s /opt/local/lib/lapack/pkgconfig/blas.pc /opt/local/lib/pkgconfig/blas.pc
sudo ln -s /opt/local/lib/lapack/pkgconfig/lapack.pc /opt/local/lib/pkgconfig/lapack.pc
Introduction
Here is a small example for constructing and formatting matrices:
Prelude> import qualified Numeric.LAPACK.Matrix as Matrix
Prelude Matrix> import Numeric.LAPACK.Format as Fmt ((##))
Prelude Matrix Fmt> let a = Matrix.fromList (Matrix.shapeInt 3) (Matrix.shapeInt 4) [(0::Float)..]
Prelude Matrix Fmt> a ## "%.4f"
0.0000 1.0000 2.0000 3.0000
4.0000 5.0000 6.0000 7.0000
8.0000 9.0000 10.0000 11.0000
Prelude Matrix Fmt> import qualified Numeric.LAPACK.Matrix.Shape as MatrixShape
Prelude Matrix Fmt MatrixShape> import qualified Numeric.LAPACK.Matrix.Triangular as Triangular
Prelude Matrix Fmt MatrixShape Triangular> let u = Triangular.upperFromList MatrixShape.RowMajor (Matrix.shapeInt 4) [(0::Float)..]
Prelude Matrix Fmt MatrixShape Triangular> (u, Triangular.transpose u) ## "%.4f"
0.0000 1.0000 2.0000 3.0000
4.0000 5.0000 6.0000
7.0000 8.0000
9.0000
0.0000
1.0000 4.0000
2.0000 5.0000 7.0000
3.0000 6.0000 8.0000 9.0000
You may find a more complex introductory example at:
http://code.henning-thielemann.de/bob2019/main.pdf
Formatting
We do not try to do fancy formatting for the Show
instance.
The Show
instances of matrices emit plain valid Haskell code in one line
where all numbers are printed in full precision.
If matrices are part of larger Haskell data structures
this kind of formatting works best.
For human-friendly formatting in GHCi you need to add something like ## "%.4f"
after a matrix or vector expression.
It means: Print all numbers in fixed point representation
using four digits for the fractional part.
You can use the formatting placeholders provided by printf
.
The matrices have Hyper
instances for easy usage in
HyperHaskell.
Formatting is based on the Output
type class
that currently supports output as
Text boxes
for GHCi and
HTML
for HyperHaskell.
Matrix vs. Vector
Vectors are Storable.Array
s from the
comfort-array package.
An array can have a fancy shape
like a shape defined by an enumeration type,
the shape of two appended arrays,
a shape that is compatible to a Haskell container type,
a rectangular or triangular shape.
All operations check dynamically
whether corresponding shapes match structurally.
E.g. a|||b === c|||d
composes a matrix from four quadrants a
, b
, c
, d
.
It is not enough that a|||b
and c|||d
have the same width,
but the widths of a
and c
as well as b
and d
must match.
The type variables for shapes show which dimensions must be compatible.
We recommend to use type variables for the shapes as long as possible
because this increases type safety even
if you eventually use only ShapeInt
.
If you use statically sized shapes you get static size checks.
A matrix can have any of these shapes as height and as width.
E.g. it is no problem to define a matrix
that maps a triangular shaped array to a rectangular shaped one.
There are actually practical applications to such matrices.
A matrix can be treated as vector, but there are limitations.
E.g. if you scale a Hermitian matrix by a complex factor
it will in general be no longer Hermitian.
Another problem: Two equally sized rectangular matrices
may differ in the element order (row major vs. column major).
You cannot simply add them by adding the flattened arrays element-wise.
Thus if you want to perform vector operations on a matrix
the package requires you to “unpack” a matrix to a vector
using Matrix.Array.toVector
.
This conversion is almost a no-op and preserves most of the shape information.
The reverse operation is Matrix.Array.fromVector
.
There are more matrix types that are not based on a single array.
E.g. we provide a symbolic inverse, a scaling matrix, a permutation matrix.
We also support arrays that represent factors of a matrix factorization.
You obtain these by LU and QR decompositions.
You can extract the matrix factors of it,
but you can also multiply the factors to other matrices
or use the decompositions for solving simultaneous linear equations.
Type tags for content constraints
Full matrices have additional type tags to distinguish
between four cases of the size relations between
the height and the width of a full matrix.
In a matrix of type Matrix.Full vert horiz height width a
the type variables mean:
vert height
Small Small - Square matrix height==width
Big Small - Tall matrix size height >= size width
Small Big - Wide matrix size height <= size width
Big Big - General matrix height and width arbitrary
The relations are defined using two type tags
in order to support matrix transposition without hassle.
Using Small Small
for square matrices
and Big Big
for general matrices appears to be arbitrary,
but is chosen such that altering Small
to Big
generalizes the size relation.
Likewise we use the Triangular
matrix type
also to represent diagonal and symmetric matrices.
For Matrix.Triangular lo diag up size a
we have the cases:
lo up
Empty Empty - Diagonal matrix
Empty Full - Upper triangular matrix
Full Empty - Lower triangular matrix
Full Full - Symmetric matrix
The diag
type tag can be NonUnit
or Unit
.
Unit
can be used for matrices
that always have a unit diagonal by construction.
The property of a unit diagonal is preserved by some operations
and enables some optimizations by LAPACK.
E.g. solving with a unit triangular matrix does not require division
and thus cannot fail due to division by zero.
NonUnit
is a bit of a misnomer.
A NonUnit
matrix can still have a unit diagonal,
but in general it has not and no optimizations will take place.
Infix operators
The package provides fancy infix operators like #*|
and \*#
.
They symbolize both operands and operations.
E.g. in #*|
the hash means Matrix, the star means Multiplication
and the bar means Column Vector.
Possible operations are:
-
a_*_b
- a
multiplied by b
-
a_/_b
- a
multiplied by inverse b
-
a_\_b
- inverse a
multiplied by b
Possible operands are:
For multiplication of equally shaped matrices
we also provide instances of Semigroup.<>
.
Precedence of the operators is chosen analogously to plain *
and /
.
Associativity is chosen such that the same operator can be applied
multiple times without parentheses.
But sometimes this may mean that you have to mix
left and right associative operators,
and thus you may still need parentheses.