Hoogle Search

Within LTS Haskell 24.10 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. type family FlipOrdering (ord :: Ordering) :: Ordering

    type-natural Data.Type.Natural.Lemma.Order

    No documentation available.

  2. data FlipPP (a :: ParamPred v k) (b :: k) (c :: TyFun v Type)

    decidable Data.Type.Predicate.Param

    Flip the arguments of a ParamPred.

  3. module Data.Sized.Flipped

    No documentation available.

  4. newtype Flipped (f :: Type -> Type) a (n :: Nat)

    sized Data.Sized.Flipped

    Wrapper for Sized which takes length as its last element, instead of the second. Since 0.2.0.0

  5. Flipped :: Sized f n a -> Flipped (f :: Type -> Type) a (n :: Nat)

    sized Data.Sized.Flipped

    No documentation available.

  6. runFlip :: Flip (p :: k -> k1 -> Type) (a :: k1) (b :: k) -> p b a

    bifunctors Data.Bifunctor.Flip

    No documentation available.

  7. maybeFlipCond :: Cond -> Maybe Cond

    ghc GHC.CmmToAsm.X86.Cond

    maybeFlipCond c returns Just c' if it is possible to flip the arguments to the conditional c, and the new condition should be c'.

  8. isFlipped :: Eq c => (a -> b -> c) -> (b -> a -> c) -> a -> b -> Bool

    leancheck Test.LeanCheck.Utils.Operators

    Are two operators flipped versions of each other?

    > check $ ((<) `isFlipped` (>) :: Int -> Int -> Bool)
    +++ OK, passed 200 tests.
    
    > check $ ((<=) `isFlipped` (>=) :: Int -> Int -> Bool)
    +++ OK, passed 200 tests.
    
    > check $ ((<) `isFlipped` (>=) :: Int -> Int -> Bool)
    *** Failed! Falsifiable (after 1 tests):
    0 0
    
    > check $ ((<=) `isFlipped` (>) :: Int -> Int -> Bool)
    *** Failed! Falsifiable (after 1 tests):
    0 0
    

  9. sFlip :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: b) (t3 :: a) . Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) t1) t2) t3)

    singletons-base Data.Function.Singletons

    No documentation available.

  10. sFlip :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: b) (t3 :: a) . Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) t1) t2) t3)

    singletons-base Prelude.Singletons

    No documentation available.

Page 17 of many | Previous | Next