Hoogle Search

Within LTS Haskell 24.5 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. EQ :: Ordering

    hledger-web Hledger.Web.Import

    No documentation available.

  2. class Eq a

    hledger-web Hledger.Web.Import

    The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq. The Haskell Report defines no laws for Eq. However, instances are encouraged to follow these properties:

    • Reflexivity x == x = True
    • Symmetry x == y = y == x
    • Transitivity if x == y && y == z = True, then x == z = True
    • Extensionality if x == y = True and f is a function whose return type is an instance of Eq, then f x == f y = True
    • Negation x /= y = not (x == y)

  3. Eq :: PersistFilter

    hledger-web Hledger.Web.Import

    No documentation available.

  4. Eq :: Op

    hxt-xpath Text.XML.HXT.XPath.XPathDataTypes

    No documentation available.

  5. Eq :: BinOp

    language-c-quote Language.C.Syntax

    No documentation available.

  6. EQ :: a -> Binop a

    language-lua Language.Lua.Annotated.Syntax

    No documentation available.

  7. EQ :: Binop

    language-lua Language.Lua.Syntax

    No documentation available.

  8. Eq :: PersistFilter

    persistent-mtl Database.Persist.Sql.Shim

    No documentation available.

  9. Eq :: PersistFilter

    persistent-redis Database.Persist.Redis

    No documentation available.

  10. class Eq a

    protobuf-simple Data.ProtoBufInt

    The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq. The Haskell Report defines no laws for Eq. However, instances are encouraged to follow these properties:

    • Reflexivity x == x = True
    • Symmetry x == y = y == x
    • Transitivity if x == y && y == z = True, then x == z = True
    • Extensionality if x == y = True and f is a function whose return type is an instance of Eq, then f x == f y = True
    • Negation x /= y = not (x == y)

Page 11 of many | Previous | Next