Hoogle Search

Within LTS Haskell 24.4 (ghc-9.10.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. module Configuration.Utils.Monoid

    The distinction between appending on the left and appending on the right is important for monoids that are sensitive to ordering such as List. It is also of relevance for monoids with set semantics with non-extensional equality such as HashMap.

  2. class Semigroup a => Monoid a

    dimensional Numeric.Units.Dimensional.Prelude

    The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

    You can alternatively define mconcat instead of mempty, in which case the laws are: The method names refer to the monoid of lists under concatenation, but there are many other instances. Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product. NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

  3. class Semigroup a => Monoid a

    distribution-opensuse OpenSuse.Prelude

    The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

    You can alternatively define mconcat instead of mempty, in which case the laws are: The method names refer to the monoid of lists under concatenation, but there are many other instances. Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product. NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

  4. class Semigroup a => Monoid a

    distribution-opensuse OpenSuse.Prelude

    The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

    You can alternatively define mconcat instead of mempty, in which case the laws are: The method names refer to the monoid of lists under concatenation, but there are many other instances. Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product. NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

  5. module Data.Eliminator.Monoid

    Eliminator functions for data types in Data.Monoid. All of these are re-exported from Data.Eliminator with the following exceptions:

  6. class Semigroup a => Monoid a

    faktory Faktory.Prelude

    The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

    You can alternatively define mconcat instead of mempty, in which case the laws are: The method names refer to the monoid of lists under concatenation, but there are many other instances. Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product. NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

  7. class Semigroup a => Monoid a

    hledger-web Hledger.Web.Import

    The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

    You can alternatively define mconcat instead of mempty, in which case the laws are: The method names refer to the monoid of lists under concatenation, but there are many other instances. Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product. NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

  8. module Data.Invertible.Monoid

    Bidirectional transforms for Data.Monoid.

  9. module Parameterized.Data.Monoid

    No documentation available.

  10. module Prairie.Monoid

    No documentation available.

Page 6 of many | Previous | Next