Hoogle Search

Within Stackage Nightly 2025-08-16 (ghc-9.12.2)

Note that Stackage only displays results for the latest LTS and Nightly snapshot. Learn more.

  1. (>>=====) :: Monad m => m e -> (a -> b -> c -> d -> e -> m f) -> a -> b -> c -> d -> m f

    composition-extra Control.Monad.Syntax

    No documentation available.

  2. (>>======) :: Monad m => m f -> (a -> b -> c -> d -> e -> f -> m g) -> a -> b -> c -> d -> e -> m g

    composition-extra Control.Monad.Syntax

    No documentation available.

  3. (>>=?) :: Fractional prob => T prob a -> (a -> Bool) -> T prob a

    probability Numeric.Probability.Distribution

    filter in infix form. Can be considered an additional monadic combinator, which can be used where you would want guard otherwise.

  4. (%>>=) :: forall a b (t1 :: m a) (t2 :: a ~> m b) . SMonad m => Sing t1 -> Sing t2 -> Sing (t1 >>= t2)

    singletons-base Control.Monad.Singletons

    No documentation available.

  5. (%>>=) :: forall a b (t1 :: m a) (t2 :: a ~> m b) . SMonad m => Sing t1 -> Sing t2 -> Sing (t1 >>= t2)

    singletons-base Prelude.Singletons

    No documentation available.

  6. (:>>=) :: forall (instr :: Type -> Type) b (m :: Type -> Type) a . instr b -> (b -> ProgramT instr m a) -> ProgramViewT instr m a

    operational Control.Monad.Operational

    No documentation available.

  7. (>>>=) :: (Bound t, Monad f) => t f a -> (a -> f c) -> t f c

    bound Bound

    Perform substitution If t is an instance of MonadTrans and you are compiling on GHC >= 7.4, then this gets the default definition:

    m >>>= f = m >>= lift . f
    

  8. (>>>=) :: (Bound t, Monad f) => t f a -> (a -> f c) -> t f c

    bound Bound.Class

    Perform substitution If t is an instance of MonadTrans and you are compiling on GHC >= 7.4, then this gets the default definition:

    m >>>= f = m >>= lift . f
    

  9. pattern (:>>=) :: forall t s sq f a x . () => t x -> Fun s sq f t x a -> Freer s sq f t a

    freer-par-monad Control.Monad.Freer.Par

    No documentation available.

  10. (>>>=) :: forall (sq :: (Type -> Type -> Type) -> Type -> Type -> Type) (f :: (Type -> Type) -> Type -> Type -> Type) t a s b . (Sequence sq, Funable f) => t a -> (a -> Freer s sq f t b) -> Freer s sq f t b

    freer-par-monad Control.Monad.Freer.Par

    No documentation available.

Page 7 of many | Previous | Next